An ultrafine-grained EN AW 6082 aluminum alloy was prepared by continuous serve plastic deformation (i.e., thermo-mechanical equal channel angular pressing (ECAP)-Conform process). A miniaturized tensile testing technique was used for estimating local mechanical properties with the aim to reveal the inhomogeneity of elastic and plastic properties in a workpiece volume. These inhomogeneities may appear due to the irregular shear strain distribution in a Conformed wire. Miniaturized samples for tensile testing were cut from the Conformed workpiece. Elongation of miniaturized samples was measured with a 2D digital image correlation technique as the optical extensometer. Tensile test characteristics, such as the yield strength and ultimate tensile strength, were consequently compared with results of conventional and hardness tests. The microstructure of Conformed bars was studied in the cross-section perpendicular and parallel to the extrusion direction using scanning electron microscope (SEM) and electron backscatter diffraction (EBSD) analysis. The microstructure of samples exhibits pronounced inhomogeneity, which is reflected by the hardness and tensile test results. Estimated distinctions between peripheral and central parts of the Conformed wires are probably a consequence of the significant strain differences realized in the upper and bottom wire parts.
- Keywords
- EBSD analysis, ECAP–Conform, local mechanical properties, micro-tensile techniques,
- Publication type
- Journal Article MeSH
This paper describes the mechanical properties and microstructure of commercially pure titanium (Grade 2) processed with Conform severe plastic deformation (SPD) and rotary swaging techniques. This technology enables ultrafine-grained to nanocrystalline wires to be produced in a continuous process. A comprehensive description is given of those properties which should enable straightforward implementation of the material in medical applications. Conform SPD processing has led to a dramatic refinement of the initial microstructure, producing equiaxed grains already in the first pass. The mean grain size in the transverse direction was 320 nm. Further passes did not lead to any additional appreciable grain refinement. The subsequent rotary swaging caused fine grains to become elongated. A single Conform SPD pass and subsequent rotary swaging resulted in an ultimate strength of 1060 MPa and elongation of 12%. The achieved fatigue limit was 396 MPa. This paper describes the production possibilities of ultrafine to nanocrystalline wires made of pure titanium and points out the possibility of serial production, particularly in medical implants.
- Keywords
- Conform, ECAP, continuous extrusion, medical implants, titanium, wire,
- Publication type
- Journal Article MeSH
This work deals with the application of the Conform SPD (Severe Plastic Deformation) continuous extrusion process for ultrafine to nanostructured pure titanium production. The process has been derived from the Equal Channel Angular Pressing (ECAP) technique but, unlike ECAP, it offers continuous production of high-strength wire. This study describes the Conform SPD process combined with subsequent cold working (rotary swaging technique), its potential for commercial application, and the properties of high-strength wires of pure titanium. High-strength wire of titanium Grade 4 is the product. Titanium Grade 4 reaches ultimate strengths up to 1320 MPa. This value is more than twice the ultimate strength of the unprocessed material. The typical grain size upon processing ranges from 200 to 500 nm. Process development supported by FEM analysis together with detailed microstructure characterization accompanied by mechanical properties investigation is presented.
- Keywords
- continuous production, pure titanium, severe plastic deformation,
- Publication type
- Journal Article MeSH
Severe plastic deformation represented by three passes in Conform SPD and subsequent rotary swaging was applied on Ti grade 4. This process caused extreme strengthening of material, accompanied by reduction of ductility. Mechanical properties of such material were then tuned by a suitable heat treatment. Measurements of in situ electrical resistance, in situ XRD and hardness indicated the appropriate temperature to be 450 °C for the heat treatment required to obtain desired mechanical properties. The optimal duration of annealing was stated to be 3 h. As was verified by neutron diffraction, SEM and TEM microstructure observation, the material underwent recrystallization during this heat treatment. That was documented by changes of the grain shape and evaluation of crystallite size, as well as of the reduction of internal stresses. In annealed state, the yield stress and ultimate tensile stress decreased form 1205 to 871 MPa and 1224 to 950 MPa, respectively, while the ductility increased from 7.8% to 25.1%. This study also shows that mechanical properties of Ti grade 4 processed by continual industrially applicable process (Conform SPD) are comparable with those obtained by ECAP.
- Keywords
- PAS, TEM, Ti grade 4, XRD, conform SPD, neutron diffraction,
- Publication type
- Journal Article MeSH