ECAP Dotaz Zobrazit nápovědu
The AlSi10Mg alloy is characterized by a high strength-to-weight ratio, good formability, and satisfying corrosion resistance; thus, it is very often used in automotive and aerospace applications. However, the main limitation of using this alloy is its low yield strength and ductility. The equal-channel angular pressing is a processing tool that allows one to obtain ultrafine-grained or nanomaterials, with exceptional mechanical and physical properties. The purpose of the paper was to analyze the influence of the ECAP process on the structure and hardness of the AlSi10Mg alloy, obtained by the selective laser melting process. Four types of samples were examined: as-fabricated, heat-treated, and subjected to one and two ECAP passes. The microstructure analysis was performed using light and electron microscope systems (scanning electron microscope and transmission electron microscope). To evaluate the effect of ECAP on the mechanical properties, hardness measurements were performed. We found that the samples that underwent the ECAP process were characterized by a higher hardness than the heat-treated sample. It was also found that the ECAP processing promoted the formation of structures with semicircular patterns and multiple melt pool boundaries with a mean grain size of 0.24 μm.
- Klíčová slova
- EBSD, ECAP, grain refinement, hardness, microstructure, selective laser melting,
- Publikační typ
- časopisecké články MeSH
With the aim of improving the excellent mechanical properties of the SLM-produced AlSi10Mg alloy, this research focuses on post-processing using ECAP (Equal Channel Angular Pressing). In our article, two different post-processing strategies were investigated: (1) low-temperature annealing (LTA) and subsequent ECAP processing at 150 °C; (2) no heat treatment and subsequent ECAP processing at 350 °C, 400 °C and 450 °C. The microstructure and mechanical properties of this alloy were analyzed at each stage of post-treatment. Metallographic observations, combined with SEM and EBSD studies, showed that the alloys produced by SLM have a unique cellular microstructure consisting of Si networks surrounding the Al-based matrix phase. Low-temperature annealing (LTA), followed by ECAP treatment, facilitated the microstructural evolution of the alloy with partial breakup of the Si network and observed nucleation of β-Si precipitates throughout the Al matrix. This resulted in a Vickers microhardness of 153 HV and a yield strength of 415 MPa. The main results show that post-processing of SLM-produced AlSi10Mg alloys using ECAP significantly affects the microstructural evolution and mechanical properties of the alloy.
An ultrafine-grained EN AW 6082 aluminum alloy was prepared by continuous serve plastic deformation (i.e., thermo-mechanical equal channel angular pressing (ECAP)-Conform process). A miniaturized tensile testing technique was used for estimating local mechanical properties with the aim to reveal the inhomogeneity of elastic and plastic properties in a workpiece volume. These inhomogeneities may appear due to the irregular shear strain distribution in a Conformed wire. Miniaturized samples for tensile testing were cut from the Conformed workpiece. Elongation of miniaturized samples was measured with a 2D digital image correlation technique as the optical extensometer. Tensile test characteristics, such as the yield strength and ultimate tensile strength, were consequently compared with results of conventional and hardness tests. The microstructure of Conformed bars was studied in the cross-section perpendicular and parallel to the extrusion direction using scanning electron microscope (SEM) and electron backscatter diffraction (EBSD) analysis. The microstructure of samples exhibits pronounced inhomogeneity, which is reflected by the hardness and tensile test results. Estimated distinctions between peripheral and central parts of the Conformed wires are probably a consequence of the significant strain differences realized in the upper and bottom wire parts.
- Klíčová slova
- EBSD analysis, ECAP–Conform, local mechanical properties, micro-tensile techniques,
- Publikační typ
- časopisecké články MeSH
In this work, we used an AlSi10Mg alloy produced by selective laser melting (SLM) to study the effects of build direction and deformation temperature on the grain refinement process. Two different build orientations of 0° and 90° and deformation temperatures of 150 °C and 200 °C were selected to study this effect. Light microscopy, electron backscatter diffraction and transmission electron microscopy were used to investigate the microtexture and microstructural evolution of the laser powder bed fusion (LPBF) billets. Grain boundary maps showed that the proportion of low-angle grain boundaries (LAGBs) dominated in every analysed sample. It was also found that different thermal histories caused by the change in build direction resulted in microstructures with different grain sizes. In addition, EBSD maps revealed heterogeneous microstructures comprising equiaxed fine-grained zones with ≈0.6 μm grain size and coarse-grained zones with ≈10 μm grain size. From the detailed microstructural observations, it was found that the formation of a heterogeneous microstructure is closely related to the increased fraction of melt pool borders. The results presented in this article confirm that the build direction has a significant influence on the microstructure evolution during the ECAP process.
- Klíčová slova
- AlSi10Mg, ECAP, build direction, grain refinement, microstructural characterization,
- Publikační typ
- časopisecké články MeSH
SPD (several plastic deformations) methods make it possible to obtain an ultrafine-grained structure (UFG) in larger volumes of material and thus improve its mechanical properties. The presented work focuses on the structural and mechanical changes of aluminium alloy AlMgSi0.5 (EN AW 6060) during processing by repeated extrusion through the ECAP rectangular channel. After a four-pass extrusion, the samples' microstructures were observed using an optical microscope, where refinement of the material grains was confirmed. Tensile tests determined the extrusion forces and allowed interpretation of the changes in the mechanical properties of the stressed alloy. The grain size was refined from 28.90 μm to 4.63 μm. A significant improvement in the strength of the material (by 45%) and a significant deterioration in ductility (to 60%) immediately after the first extrusion was confirmed. The third pass through the die appeared to be optimal for the chosen deformation path, while after the fourth pass, micro-cracks appeared, significantly reducing the strength of the material. Based on the measurement results, new analytical equations were formulated to predict the magnitude or intensity of the volumetric and shape deformations of the structural grain size and, in particular, the adequate increase in the strength and yield point of the material.
- Klíčová slova
- aluminium alloy, intensive plastic deformation method, mechanical properties, microstructure,
- Publikační typ
- časopisecké články MeSH
Commercially available AZ31 magnesium alloy was four times extruded in an equal rectangular channel using three different routes (A, B, and C). Micro tensile deformation tests were performed at room temperature with the aim to reveal any plastic anisotropy developed during the extrusion. Samples for micro tensile experiments were cut from extruded billets in different orientations with respect to the pressing direction. Information about the microstructure of samples was obtained using the electron back-scatter diffraction (EBSD) technique. Deformation characteristics (yield stress, ultimate tensile stress and uniform elongation) exhibited significant anisotropy as a consequence of different orientations between the stress direction and texture and thus different deformation mechanisms.
- Klíčová slova
- equal channel angular pressing, magnesium alloy, miniaturized tensile tests, processing route, slip systems, twinning,
- Publikační typ
- časopisecké články MeSH
In this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy. The influence of microstructural and surface features on the corrosion mechanism was investigated. Despite its significance, the surface composition before exposure is often neglected by the scientific community. The analyses revealed the formation of thin ZnO, MgO, and MgCO3 layers on the surface of the material before exposure. These layers participated in the formation of corrosion products, leading to the predominant occurrence of hydrozincite. In addition, the layers possessed different resistance to the environment, resulting in localized corrosion attacks. The segregation of Mg on the Zn grain boundaries with lower potential compared with the Zn-matrix was revealed by atom probe tomography and atomic force microscopy. The degradation process was initiated by the activity of micro-galvanic cells, specifically Zn - Mg2Zn11/SrZn13. This process led to the activity of the crevice corrosion mechanism and subsequent attack to a depth of 250 μm. The corrosion rate of the alloy determined by the weight loss method was 0.36 mm·a-1. Based on this detailed study, the degradation mechanism of the Zn-0.8Mg-0.2Sr alloy is proposed.
- Klíčová slova
- Biodegradable metals, Characterization, ECAP, Mechanism, Zinc-based alloy,
- Publikační typ
- časopisecké články MeSH
In this article, the evolution of microstructural characteristics of selectively laser-melted AlSi10Mg alloy subjected to equal channel angular pressing (ECAP) is investigated. The microstructures were analyzed in detail using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD), and transmission electron microscopy (TEM). A heterogeneous ultrafine-grained microstructure was produced after one ECAP pass at 100 °C. This microstructure was composed of Al/Si cells and sub-micrometer grains. The grains were refined by conventional dislocation processes; however, evidence of dynamic recrystallization was also documented. Furthermore, it was revealed that the Al/Si cells contribute significantly to grain refinement. EBSD/TKD investigations showed that cell misorientation increased after ECAP processing, resulting in an increased fraction of grains with very low misorientation angles.
- Klíčová slova
- AlSi10Mg, EBSD, ECAP, TKD, grain refinement, microstructure,
- Publikační typ
- časopisecké články MeSH
The formulation of the Hall-Petch relationship in the early 1950s has raised immense interest in studying the influence of the grain size of solid materials on their properties. Grain refinement can be achieved through extreme deformation. In the presented study, Equal-Channel Angular Pressing (ECAP) was successfully applied to produce an ultrafine-grained microstructure in a pure commercial Cu of 99.9 wt%. Samples were processed by ECAP at 21 °C for six passes via route A. A new equation of equilibrium that allows the exact determination of the number of extrusions and other technological parameters required to achieve the desired final grain size has been developed. The presented research also deals, in a relatively detailed and comparative way, with the use of ultrasound. In this context, a very close correlation between the process functions of extrusion and the speed of longitudinal ultrasonic waves was confirmed.
- Klíčová slova
- ECAP, copper, extrusion, grain size, structural and mechanical changes,
- Publikační typ
- časopisecké články MeSH
In this paper, we present a complete characterization of the microstructural changes that occur in an LPBF AlSi10Mg alloy subjected to various post-processing methods, including equal-channel angular pressing (ECAP), KoBo extrusion, and multi-axial forging. Kikuchi transmission diffraction and transmission electron microscopy were used to examine the microstructures. Our findings revealed that multi-axis forging produced an extremely fine subgrain structure. KoBo extrusion resulted in a practically dislocation-free microstructure. ECAP processing at temperatures between 100 °C and 200 °C generated moderate grain refinement, with subgrain diameters averaging from 300 nm to 700 nm. The obtained data highlighted the potential of severe plastic deformation as a versatile method for tailoring the microstructure of the AlSi10Mg alloy. The ability to precisely control grain size and dislocation density using specific SPD methods allows for the development of novel materials with ultrafine-grained microstructures that offer the potential for enhanced mechanical and functional properties.
- Klíčová slova
- AlSi10Mg, ECAP, KoBo extrusion, microstructure, multi-axial forging,
- Publikační typ
- časopisecké články MeSH