equal channel angular pressing Dotaz Zobrazit nápovědu
Commercially available AZ31 magnesium alloy was four times extruded in an equal rectangular channel using three different routes (A, B, and C). Micro tensile deformation tests were performed at room temperature with the aim to reveal any plastic anisotropy developed during the extrusion. Samples for micro tensile experiments were cut from extruded billets in different orientations with respect to the pressing direction. Information about the microstructure of samples was obtained using the electron back-scatter diffraction (EBSD) technique. Deformation characteristics (yield stress, ultimate tensile stress and uniform elongation) exhibited significant anisotropy as a consequence of different orientations between the stress direction and texture and thus different deformation mechanisms.
- Klíčová slova
- equal channel angular pressing, magnesium alloy, miniaturized tensile tests, processing route, slip systems, twinning,
- Publikační typ
- časopisecké články MeSH
The methods of severe plastic deformation (SPD) have gained attention within the last decades primarily owing to their ability to substantially refine the grains within metallic materials and, therefore, significantly enhance the properties. Among one of the most efficient SPD methods is the equal channel angular pressing (ECAP)-based twist channel angular pressing (TCAP) method, combining channel twist and channel bending within a single die. This unique die affects the processed material with three independent strain paths during a single pass, which supports the development of substructure and efficiently refines the grains. This review is intended to summarize the characteristics of the TCAP method and its main features documented within the last decade, since its development in 2010. The article is supplemented with a brief characterization of other known SPD methods based on the combination of ECAP and twist extrusion (TE) within a single die.
- Klíčová slova
- mechanical properties, microstructure, severe plastic deformation, twist channel angular pressing,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
With the aim of improving the excellent mechanical properties of the SLM-produced AlSi10Mg alloy, this research focuses on post-processing using ECAP (Equal Channel Angular Pressing). In our article, two different post-processing strategies were investigated: (1) low-temperature annealing (LTA) and subsequent ECAP processing at 150 °C; (2) no heat treatment and subsequent ECAP processing at 350 °C, 400 °C and 450 °C. The microstructure and mechanical properties of this alloy were analyzed at each stage of post-treatment. Metallographic observations, combined with SEM and EBSD studies, showed that the alloys produced by SLM have a unique cellular microstructure consisting of Si networks surrounding the Al-based matrix phase. Low-temperature annealing (LTA), followed by ECAP treatment, facilitated the microstructural evolution of the alloy with partial breakup of the Si network and observed nucleation of β-Si precipitates throughout the Al matrix. This resulted in a Vickers microhardness of 153 HV and a yield strength of 415 MPa. The main results show that post-processing of SLM-produced AlSi10Mg alloys using ECAP significantly affects the microstructural evolution and mechanical properties of the alloy.
Layered-graphene reinforced-metal matrix nanocomposites with excellent mechanical properties and low density are a new class of advanced materials for a broad range of applications. A facile three-step approach based on ultra-sonication for dispersion of graphene nanosheets (GNSs), ball milling for Al-powder mixing with different weight percentages of GNSs, and equal-channel angular pressing for powders' consolidation at 200 °C was applied for nanocomposite fabrication. The Raman analysis revealed that the GNSs in the sample with 0.25 wt.% GNSs were exfoliated by the creation of some defects and disordering. X-ray diffraction and microstructural analysis confirmed that the interaction of the GNSs and the matrix was almost mechanical, interfacial bonding. The density test demonstrated that all samples except the 1 wt.% GNSs were fully densified due to the formation of microvoids, which were observed in the scanning electron microscope analysis. Investigation of the mechanical properties showed that by using Al powders with commercial purity, the 0.25 wt.% GNS sample possessed the maximum hardness, ultimate shear strength, and uniform normal displacement in comparison with the other samples. The highest mechanical properties were observed in the 0.25 wt.% GNSs composite, resulting from the embedding of exfoliated GNSs between Al powders, excellent mechanical bonding, and grain refinement. In contrast, agglomerated GNSs and the existence of microvoids caused deterioration of the mechanical properties in the 1 wt.% GNSs sample.
- Klíčová slova
- Graphene nanosheets, aluminum matrix, ball milling, equal-channel angular pressing (ECAP), mechanical properties, microstructure,
- Publikační typ
- časopisecké články MeSH
Effect of processing by equal channel angular pressing (ECAP) on the degradation behaviour of extruded LAE442 magnesium alloy was investigated in a 0.1M NaCl solution, Kirkland's biocorrosion medium (KBM) and Minimum Essential Medium (MEM), both with and without 10% of foetal bovine serum (FBS). Uniform degradation of as extruded and ECAP processed samples in NaCl solution was observed, nevertheless higher corrosion resistance was found in the latter material. The increase of corrosion resistance due to ECAP was observed also after 14-days immersion in all media used. Higher compactness of the corrosion layer formed on the samples after ECAP was responsible for the observed decrease of corrosion resistance, which was proven by scanning electron microscope investigation. Lower corrosion rate in media with FBS was observed and was explained by additional effect of protein incorporation on the corrosion layer stability. A cytotoxicity test using L929 cells was carried out to investigate possible effect of processing on the cell viability. Sufficient cytocompatibility of the extruded samples was observed with no adverse effects of the subsequent ECAP processing. In conclusion, this in vitro study proved that the degradation behaviour of the LAE442 alloy could be improved by subsequent ECAP processing and this material is a good candidate for future in vivo investigation.
- Klíčová slova
- Biodegradation, Cytotoxicity, Implant material, In vitro, Magnesium,
- MeSH
- buněčná smrt účinky léků MeSH
- buněčné linie MeSH
- chlorid sodný farmakologie MeSH
- fibroblasty cytologie účinky léků metabolismus MeSH
- hořčík chemie MeSH
- ionty MeSH
- koroze MeSH
- myši MeSH
- roztoky MeSH
- slitiny chemie MeSH
- testování materiálů metody MeSH
- vodík analýza MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid sodný MeSH
- hořčík MeSH
- ionty MeSH
- roztoky MeSH
- slitiny MeSH
- vodík MeSH
Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed-the strain rate dependence of the parameter m, the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range.
- Klíčová slova
- Al-Mn-based alloys, ECAP, TRC, high temperature mechanical properties, microstructure stability,
- Publikační typ
- časopisecké články MeSH
The AlSi10Mg alloy is characterized by a high strength-to-weight ratio, good formability, and satisfying corrosion resistance; thus, it is very often used in automotive and aerospace applications. However, the main limitation of using this alloy is its low yield strength and ductility. The equal-channel angular pressing is a processing tool that allows one to obtain ultrafine-grained or nanomaterials, with exceptional mechanical and physical properties. The purpose of the paper was to analyze the influence of the ECAP process on the structure and hardness of the AlSi10Mg alloy, obtained by the selective laser melting process. Four types of samples were examined: as-fabricated, heat-treated, and subjected to one and two ECAP passes. The microstructure analysis was performed using light and electron microscope systems (scanning electron microscope and transmission electron microscope). To evaluate the effect of ECAP on the mechanical properties, hardness measurements were performed. We found that the samples that underwent the ECAP process were characterized by a higher hardness than the heat-treated sample. It was also found that the ECAP processing promoted the formation of structures with semicircular patterns and multiple melt pool boundaries with a mean grain size of 0.24 μm.
- Klíčová slova
- EBSD, ECAP, grain refinement, hardness, microstructure, selective laser melting,
- Publikační typ
- časopisecké články MeSH
The research and development of modern metallic materials goes hand in hand with increasing their lifetime via optimized deformation processing. The presented work deals with preparation of an Al/Cu clad composite with implemented reinforcing Cu wires by the method of twist channel angular pressing (TCAP). Single and double pass extrusion of the clad composite was simulated numerically and carried out experimentally. This work is unique as no such study has been presented so far. Detailed monitoring of the deformation behavior during both the passes was enabled by superimposed grids and sensors. Both the sets of results revealed that already the single pass imparted significant effective strain (higher than e.g., conventional equal channel angular pressing (ECAP)), especially to the Al matrix, and resulted in notable deformation strengthening of both the Al and Cu composite components, which was confirmed by the increased punch load and decreased plastic flow velocity (second pass compared to first pass). Processing via the second pass also resulted in homogenization of the imposed strain and residual stress across the composite cross-section. However, the investigated parameters featured slight variations in dependence on the monitored location across the cross-section.
- Klíčová slova
- clad composite, effective strain, finite element analysis, residual stress, rotary swaging,
- Publikační typ
- časopisecké články MeSH
In this work, we used an AlSi10Mg alloy produced by selective laser melting (SLM) to study the effects of build direction and deformation temperature on the grain refinement process. Two different build orientations of 0° and 90° and deformation temperatures of 150 °C and 200 °C were selected to study this effect. Light microscopy, electron backscatter diffraction and transmission electron microscopy were used to investigate the microtexture and microstructural evolution of the laser powder bed fusion (LPBF) billets. Grain boundary maps showed that the proportion of low-angle grain boundaries (LAGBs) dominated in every analysed sample. It was also found that different thermal histories caused by the change in build direction resulted in microstructures with different grain sizes. In addition, EBSD maps revealed heterogeneous microstructures comprising equiaxed fine-grained zones with ≈0.6 μm grain size and coarse-grained zones with ≈10 μm grain size. From the detailed microstructural observations, it was found that the formation of a heterogeneous microstructure is closely related to the increased fraction of melt pool borders. The results presented in this article confirm that the build direction has a significant influence on the microstructure evolution during the ECAP process.
- Klíčová slova
- AlSi10Mg, ECAP, build direction, grain refinement, microstructural characterization,
- Publikační typ
- časopisecké články MeSH
In this study, microstructural features direct metal laser melted (DMLM) aluminium-silicon-magnesium (AlSi10Mg) are investigated using advanced transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The focus is on post-processing by ECAP (Equal Channel Angular Pressing) and its effects on grain refinement, stacking fault formation and dislocation accumulation. In addition, the strength enhancing role of stacking faults is for the first time quantified. The results show that ECAP can increase the yield strength from 294 to 396 MPa, while the elongation increases from 2.4% to 6%. These results show that ECAP processing offers a new approach for producing AlSi10Mg products with improved strength and ductility.
- Publikační typ
- časopisecké články MeSH