Machine-learning
Dotaz
Zobrazit nápovědu
Digitalization has gradually made its way into many areas of medicine, including pathology. Along with digital data processing comes the application of artificial intelligence methods to simplify routine processes, enhance safety, etc. Although general awareness of artificial intelligence methods is increasing, it is still not common for professionals from non-technical fields to have a detailed understanding of how such systems work and learn. This text aims to explain the basics of machine learning in an accessible way using examples and illustrations from digital pathology. This is not intended to be a comprehensive overview or an introduction to cutting-edge methods. Instead, we use the simplest models to focus on fundamental concepts behind most learning systems. The text concentrates on decision trees, whose functionality is easy to explain, and basic neural networks, the primary models used in today's artificial intelligence. We also attempt to describe the collaborative process between medical specialists, who provide the data, and computer scientists, who use this data to develop learning systems. This text will help bridge the knowledge gap between medical professionals and computer scientists, contributing to more effective interdisciplinary collaboration.
- Klíčová slova
- Decision trees, Diagnostic Systems, Digital Pathology, Neural networks, machine learning,
- MeSH
- lidé MeSH
- neuronové sítě MeSH
- patologie * MeSH
- patologové * MeSH
- rozhodovací stromy MeSH
- strojové učení * MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Additive friction stir deposition (AFSD) is a novel solid-state additive manufacturing technique that circumvents issues of porosity, cracking, and properties anisotropy that plague traditional powder bed fusion and directed energy deposition approaches. However, correlations between process parameters, thermal profiles, and resulting microstructure in AFSD still need to be better understood. This hinders process optimization for properties. This work employs a framework combining supervised machine learning (SML) and physics-informed neural networks (PINNs) to predict peak temperature distribution in AFSD from process parameters. Eight regression algorithms were implemented for SML modeling, while four PINNs leveraged governing equations for transport, wave propagation, heat transfer, and quantum mechanics. Across multiple statistical measures, ensemble techniques like gradient boosting proved superior for SML, with the lowest MSE of 165.78. The integrated ML approach was also applied to classify deposition quality from process factors, with logistic regression delivering robust accuracy. By fusing data-driven learning and fundamental physics, this dual methodology provides comprehensive insights into tailoring microstructure through thermal management in AFSD. The work demonstrates the power of bridging statistical and physics-based modeling for elucidating AM process-property relationships.
Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.
- Klíčová slova
- machine learning, reproducibility, standards, transparency,
- MeSH
- databáze faktografické MeSH
- lidé MeSH
- registrace * MeSH
- reprodukovatelnost výsledků MeSH
- řízené strojové učení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In response to our study, the commentary by Infanti et al. (2024) raised critical points regarding (i) the conceptualization and utility of the user-avatar bond in addressing gaming disorder (GD) risk, and (ii) the optimization of supervised machine learning techniques applied to assess GD risk. To advance the scientific dialogue and progress in these areas, the present paper aims to: (i) enhance the clarity and understanding of the concepts of the avatar, the user-avatar bond, and the digital phenotype concerning gaming disorder (GD) within the broader field of behavioral addictions, and (ii) comparatively assess how the user-avatar bond (UAB) may predict GD risk, by both removing data augmentation before the data split and by implementing alternative data imbalance treatment approaches in programming.
- Klíčová slova
- classification, diagnosis, gaming disorder, machine learning, user-avatar bond,
- MeSH
- avatar MeSH
- lidé MeSH
- netholismus * MeSH
- řízené strojové učení MeSH
- strojové učení * MeSH
- uživatelské rozhraní počítače MeSH
- videohry MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Brain-computer interfaces are used for direct two-way communication between the human brain and the computer. Brain signals contain valuable information about the mental state and brain activity of the examined subject. However, due to their non-stationarity and susceptibility to various types of interference, their processing, analysis and interpretation are challenging. For these reasons, the research in the field of brain-computer interfaces is focused on the implementation of artificial intelligence, especially in five main areas: calibration, noise suppression, communication, mental condition estimation, and motor imagery. The use of algorithms based on artificial intelligence and machine learning has proven to be very promising in these application domains, especially due to their ability to predict and learn from previous experience. Therefore, their implementation within medical technologies can contribute to more accurate information about the mental state of subjects, alleviate the consequences of serious diseases or improve the quality of life of disabled patients.
- Klíčová slova
- Artificial intelligence, Artificial neural networks, Brain–computer interfaces, Fuzzy logic, Machine learning, Nature-inspired optimization techniques,
- MeSH
- algoritmy MeSH
- kvalita života MeSH
- lidé MeSH
- mozek MeSH
- počítače MeSH
- rozhraní mozek-počítač * MeSH
- strojové učení MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
TransCelerate reports on the results of 2019, 2020, and 2021 member company (MC) surveys on the use of intelligent automation in pharmacovigilance processes. MCs increased the number and extent of implementation of intelligent automation solutions throughout Individual Case Safety Report (ICSR) processing, especially with rule-based automations such as robotic process automation, lookups, and workflows, moving from planning to piloting to implementation over the 3 survey years. Companies remain highly interested in other technologies such as machine learning (ML) and artificial intelligence, which can deliver a human-like interpretation of data and decision making rather than just automating tasks. Intelligent automation solutions are usually used in combination with more than one technology being used simultaneously for the same ICSR process step. Challenges to implementing intelligent automation solutions include finding/having appropriate training data for ML models and the need for harmonized regulatory guidance.
- MeSH
- automatizace MeSH
- farmakovigilance * MeSH
- lidé MeSH
- strojové učení MeSH
- technologie MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Enzymes offer a more environmentally friendly and low-impact solution to conventional chemistry, but they often require additional engineering for their application in industrial settings, an endeavour that is challenging and laborious. To address this issue, the power of machine learning can be harnessed to produce predictive models that enable the in silico study and engineering of improved enzymatic properties. Such machine learning models, however, require the conversion of the complex biological information to a numerical input, also called protein representations. These inputs demand special attention to ensure the training of accurate and precise models, and, in this review, we therefore examine the critical step of encoding protein information to numeric representations for use in machine learning. We selected the most important approaches for encoding the three distinct biological protein representations - primary sequence, 3D structure, and dynamics - to explore their requirements for employment and inductive biases. Combined representations of proteins and substrates are also introduced as emergent tools in biocatalysis. We propose the division of fixed representations, a collection of rule-based encoding strategies, and learned representations extracted from the latent spaces of large neural networks. To select the most suitable protein representation, we propose two main factors to consider. The first one is the model setup, which is influenced by the size of the training dataset and the choice of architecture. The second factor is the model objectives such as consideration about the assayed property, the difference between wild-type models and mutant predictors, and requirements for explainability. This review is aimed at serving as a source of information and guidance for properly representing enzymes in future machine learning models for biocatalysis.
- Klíčová slova
- Biocatalysis, Enzyme engineering, Machine learning, Predictive models, Protein dynamics, Protein representations, Representation learning,
- MeSH
- biokatalýza * MeSH
- enzymy metabolismus chemie genetika MeSH
- neuronové sítě MeSH
- proteiny chemie metabolismus MeSH
- strojové učení * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- enzymy MeSH
- proteiny MeSH
The fingerprinting technique is a popular approach to reveal location of persons, instruments or devices in an indoor environment. Typically based on signal strength measurement, a power level map is created first in the learning phase to align with measured values in the inference. Second, the location is determined by taking the point for which the recorded received power level is closest to the power level actually measured. The biggest limit of this technique is the reliability of power measurements, which may lack accuracy in many wireless systems. To this end, this work extends the power level measurement by using multiple anchors and multiple radio channels and, consequently, considers different approaches to aligning the actual measurements with the recorded values. The dataset is available online. This article focuses on the very popular radio technology Bluetooth Low Energy to explore the possible improvement of the system accuracy through different machine learning approaches. It shows how the accuracy-complexity trade-off influences the possible candidate algorithms on an example of three-channel Bluetooth received signal strength based fingerprinting in a one dimensional environment with four static anchors and in a two dimensional environment with the same set of anchors. We provide a literature survey to identify the machine learning algorithms applied in the literature to show that the studies available can not be compared directly. Then, we implement and analyze the performance of four most popular supervised learning techniques, namely k Nearest Neighbors, Support Vector Machines, Random Forest, and Artificial Neural Network. In our scenario, the most promising machine learning technique being the Random Forest with classification accuracy over 99%.
- Klíčová slova
- Bluetooth, fingerprinting, indoor navigation, machine learning,
- MeSH
- algoritmy MeSH
- neuronové sítě * MeSH
- reprodukovatelnost výsledků MeSH
- strojové učení * MeSH
- support vector machine MeSH
- Publikační typ
- časopisecké články MeSH
The search for non-invasive, fast, and low-cost diagnostic tools has gained significant traction among many researchers worldwide. Dielectric properties calculated from microwave signals offer unique insights into biological tissue. Material properties, such as relative permittivity (εr) and conductivity (σ), can vary significantly between healthy and unhealthy tissue types at a given frequency. Understanding this difference in properties is key for identifying the disease state. The frequency-dependent nature of the dielectric measurements results in large datasets, which can be postprocessed using artificial intelligence (AI) methods. In this work, the dielectric properties of liver tissues in three mouse models of liver disease are characterized using dielectric spectroscopy. The measurements are grouped into four categories based on the diets or disease state of the mice, i.e., healthy mice, mice with non-alcoholic steatohepatitis (NASH) induced by choline-deficient high-fat diet, mice with NASH induced by western diet, and mice with liver fibrosis. Multi-class classification machine learning (ML) models are then explored to differentiate the liver tissue groups based on dielectric measurements. The results show that the support vector machine (SVM) model was able to differentiate the tissue groups with an accuracy up to 90%. This technology pipeline, thus, shows great potential for developing the next generation non-invasive diagnostic tools.
- Klíčová slova
- dielectric spectroscopy, fibrosis, machine learning, microwave, non-alcoholic steatohepatitis, relative permittivity,
- MeSH
- jaterní cirhóza MeSH
- játra patologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nealkoholová steatóza jater * diagnóza patologie MeSH
- strojové učení MeSH
- umělá inteligence MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Breast cancer survival prediction can have an extreme effect on selection of best treatment protocols. Many approaches such as statistical or machine learning models have been employed to predict the survival prospects of patients, but newer algorithms such as deep learning can be tested with the aim of improving the models and prediction accuracy. In this study, we used machine learning and deep learning approaches to predict breast cancer survival in 4,902 patient records from the University of Malaya Medical Centre Breast Cancer Registry. The results indicated that the multilayer perceptron (MLP), random forest (RF) and decision tree (DT) classifiers could predict survivorship, respectively, with 88.2 %, 83.3 % and 82.5 % accuracy in the tested samples. Support vector machine (SVM) came out to be lower with 80.5 %. In this study, tumour size turned out to be the most important feature for breast cancer survivability prediction. Both deep learning and machine learning methods produce desirable prediction accuracy, but other factors such as parameter configurations and data transformations affect the accuracy of the predictive model.
- MeSH
- analýza přežití MeSH
- deep learning * MeSH
- demografie MeSH
- dospělí MeSH
- kalibrace MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nádory prsu mortalita MeSH
- neuronové sítě MeSH
- rozhodovací stromy MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- support vector machine MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH