Implementation of artificial intelligence and machine learning-based methods in brain-computer interaction
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37329623
DOI
10.1016/j.compbiomed.2023.107135
PII: S0010-4825(23)00600-5
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial intelligence, Artificial neural networks, Brain–computer interfaces, Fuzzy logic, Machine learning, Nature-inspired optimization techniques,
- MeSH
- algoritmy MeSH
- kvalita života MeSH
- lidé MeSH
- mozek MeSH
- počítače MeSH
- rozhraní mozek-počítač * MeSH
- strojové učení MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Brain-computer interfaces are used for direct two-way communication between the human brain and the computer. Brain signals contain valuable information about the mental state and brain activity of the examined subject. However, due to their non-stationarity and susceptibility to various types of interference, their processing, analysis and interpretation are challenging. For these reasons, the research in the field of brain-computer interfaces is focused on the implementation of artificial intelligence, especially in five main areas: calibration, noise suppression, communication, mental condition estimation, and motor imagery. The use of algorithms based on artificial intelligence and machine learning has proven to be very promising in these application domains, especially due to their ability to predict and learn from previous experience. Therefore, their implementation within medical technologies can contribute to more accurate information about the mental state of subjects, alleviate the consequences of serious diseases or improve the quality of life of disabled patients.
Citace poskytuje Crossref.org