Multigene phylogeny Dotaz Zobrazit nápovědu
Fungi in the class Leotiomycetes are ecologically diverse, including mycorrhizas, endophytes of roots and leaves, plant pathogens, aquatic and aero-aquatic hyphomycetes, mammalian pathogens, and saprobes. These fungi are commonly detected in cultures from diseased tissue and from environmental DNA extracts. The identification of specimens from such character-poor samples increasingly relies on DNA sequencing. However, the current classification of Leotiomycetes is still largely based on morphologically defined taxa, especially at higher taxonomic levels. Consequently, the formal Leotiomycetes classification is frequently poorly congruent with the relationships suggested by DNA sequencing studies. Previous class-wide phylogenies of Leotiomycetes have been based on ribosomal DNA markers, with most of the published multi-gene studies being focussed on particular genera or families. In this paper we collate data available from specimens representing both sexual and asexual morphs from across the genetic breadth of the class, with a focus on generic type species, to present a phylogeny based on up to 15 concatenated genes across 279 specimens. Included in the dataset are genes that were extracted from 72 of the genomes available for the class, including 10 new genomes released with this study. To test the statistical support for the deepest branches in the phylogeny, an additional phylogeny based on 3156 genes from 51 selected genomes is also presented. To fill some of the taxonomic gaps in the 15-gene phylogeny, we further present an ITS gene tree, particularly targeting ex-type specimens of generic type species. A small number of novel taxa are proposed: Marthamycetales ord. nov., and Drepanopezizaceae and Mniaeciaceae fams. nov. The formal taxonomic changes are limited in part because of the ad hoc nature of taxon and specimen selection, based purely on the availability of data. The phylogeny constitutes a framework for enabling future taxonomically targeted studies using deliberate specimen selection. Such studies will ideally include designation of epitypes for the type species of those genera for which DNA is not able to be extracted from the original type specimen, and consideration of morphological characters whenever genetically defined clades are recognized as formal taxa within a classification.
- Klíčová slova
- Chaetomellales, Erysiphales, Genome phylogeny, Helotiales, Leotiales, Marthamycetales, Phacidiales, Rhytismatales, Thelebolales, Three new taxa,
- Publikační typ
- časopisecké články MeSH
Archamoebae is an understudied group of anaerobic free-living or endobiotic protists that constitutes the major anaerobic lineage of the supergroup Amoebozoa. Hitherto, the phylogeny of Archamoebae was based solely on SSU rRNA and actin genes, which did not resolve relationships among the main lineages of the group. Because of this uncertainty, several different scenarios had been proposed for the phylogeny of the Archamoebae. In this study, we present the first multigene phylogenetic analysis that includes members of Pelomyxidae, and Rhizomastixidae. The analysis clearly shows that Mastigamoebidae, Pelomyxidae and Rhizomastixidae form a clade of mostly free-living, amoeboid flagellates, here called Pelobiontida. The predominantly endobiotic and aflagellated Entamoebidae represents a separate, deep-branching lineage, Entamoebida. Therefore, two unique evolutionary events, horizontal transfer of the nitrogen fixation system from bacteria and transfer of the sulfate activation pathway to mitochondrial derivatives, predate the radiation of recent lineages of Archamoebae. The endobiotic lifestyle has arisen at least three times independently during the evolution of the group. We also present new ultrastructural data that clarifies the primary divergence among the family Mastigamoebidae which had previously been inferred from phylogenetic analyses based on SSU rDNA.
- Klíčová slova
- Classification, Conosa, Evolution of parasitism, Flagellar apparatus, Nitrogen fixation system, Pelobiontida,
- MeSH
- Archamoebae klasifikace genetika metabolismus ultrastruktura MeSH
- fixace dusíku genetika MeSH
- fylogeneze * MeSH
- mitochondrie metabolismus MeSH
- molekulární evoluce MeSH
- multigenová rodina genetika MeSH
- přenos genů horizontální genetika MeSH
- sírany metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- sírany MeSH
Atheliales (Agaricomycetes, Basidiomycota) is an order mostly composed of corticioid fungi, containing roughly 100 described species in 20 genera. Members exhibit remarkable ecological diversity, including saprotrophs, ectomycorrhizal symbionts, facultative parasites of plants or lichens, and symbionts of termites. Ectomycorrhizal members are well known because they often form a major part of boreal and temperate fungal communities. However, Atheliales is generally understudied, and molecular data are scarce. Furthermore, the order is riddled with many taxonomic problems; some genera are non-monophyletic and several species have been shown to be more closely related to other orders. We investigated the phylogenetic position of genera that are currently listed in Atheliales sensu lato by employing an Agaricomycetes-wide dataset with emphasis on Atheliales including the type species of genera therein. A phylogenetic analysis based on 5.8S, LSU, rpb2, and tef1 (excluding third codon) retrieved Atheliales in subclass Agaricomycetidae, as sister to Lepidostromatales. In addition, a number of Atheliales genera were retrieved in other orders with strong support: Byssoporia in Russulales, Digitatispora in Agaricales, Hypochnella in Polyporales, Lyoathelia in Hymenochaetales, and Pteridomyces in Trechisporales. Based on this result, we assembled another dataset focusing on the clade with Atheliales sensu stricto and representatives from Lepidostromatales and Boletales as outgroups, based on ITS (ITS1-5.8S-ITS2), LSU, rpb2, and tef1. The reconstructed phylogeny of Atheliales returned five distinct lineages, which we propose here as families. Lobulicium, a monotypic genus with a distinct morphology of seven-lobed basidiospores, was placed as sister to the rest of Atheliales. A new family is proposed to accommodate this genus, Lobuliciaceae fam. nov. The remaining four lineages can be named following the family-level classification by Jülich (1982), and thus we opted to use the names Atheliaceae, Byssocorticiaceae, Pilodermataceae, and Tylosporaceae, albeit with amended circumscriptions.
- Klíčová slova
- Agaricomycetes, Basidiomycota, Corticioid fungi, Family-level taxonomy, Multi-locus phylogeny,
- MeSH
- Basidiomycota * genetika MeSH
- DNA fungální genetika MeSH
- fylogeneze * MeSH
- lidé MeSH
- ribozomální DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
- ribozomální DNA MeSH
Thirteen morphologically similar strains of barbatosphaeria- and tectonidula-like fungi were studied based on the comparison of cultural and morphological features of sexual and asexual morphs and phylogenetic analyses of five nuclear loci, i.e. internal transcribed spacer rDNA operon (ITS), large and small subunit nuclear ribosomal DNA, β-tubulin, and second largest subunit of RNA polymerase II. Phylogenetic results were supported by in-depth comparative analyses of common core secondary structure of ITS1 and ITS2 in all strains and the identification of non-conserved, co-evolving nucleotides that maintain base pairing in the RNA transcript. Barbatosphaeria is defined as a well-supported monophyletic clade comprising several lineages and is placed in the Sordariomycetes incertae sedis. The genus is expanded to encompass nine species with both septate and non-septate ascospores in clavate, stipitate asci with a non-amyloid apical annulus and non-stromatic ascomata with a long decumbent neck and carbonised wall often covered by pubescence. The asexual morphs are dematiaceous hyphomycetes with holoblastic conidiogenesis belonging to Ramichloridium and Sporothrix types. The morphologically similar Tectonidula, represented by the type species T. hippocrepida, grouped with members of Barbatosphaeria and is transferred to that genus. Four new species are introduced and three new combinations in Barbatosphaeria are proposed. A dichotomous key to species accepted in the genus is provided.
- Klíčová slova
- Ramichloridium, Sporothrix, Tectonidula, phylogenetics, sequence analysis, spacer regions,
- Publikační typ
- časopisecké články MeSH
The species Metchnikovella dogieli (Paskerova et al. Protistology 10:148-157, 2016) belongs to one of the early diverging microsporidian groups, the metchnikovellids (Microsporidia: Metchnikovellidae). In relation to typical ('core') microsporidia, this group is considered primitive. The spores of metchnikovellids have no classical polar sac-anchoring disk complex, no coiled polar tube, no posterior vacuole, and no polaroplast. Instead, they possess a short thick manubrium that expands into a manubrial cistern. These organisms are hyperparasites; they infect gregarines that parasitise marine invertebrates. M. dogieli is a parasite of the archigregarine Selenidium pygospionis (Paskerova et al. Protist 169:826-852, 2018), which parasitises the polychaete Pygospio elegans. This species was discovered in samples collected in the silt littoral zone at the coast of the White Sea, North-West Russia, and was described based on light microscopy. No molecular data are available for this species, and the publicly accessible genomic data for metchnikovellids are limited to two species: M. incurvata Caullery & Mesnil, 1914 and Amphiamblys sp. WSBS2006. In the present study, we applied single-cell genomics methods with whole-genome amplification to perform next-generation sequencing of M. dogieli genomic DNA. We performed a phylogenetic analysis based on the SSU rRNA gene and reconstructed a multigene phylogeny using a concatenated alignment that included 46 conserved single-copy protein domains. The analyses recovered a fully supported clade of metchnikovellids as a basal group to the core microsporidia. Two members of the genus Metchnikovella did not form a clade in our tree. This may indicate that this genus is paraphyletic and requires revision.
- Klíčová slova
- Metchnikovellids, Microsporidia, Phylogenomics, Phylogeny,
- MeSH
- Apicomplexa mikrobiologie MeSH
- fylogeneze MeSH
- genomika MeSH
- Microsporidia klasifikace genetika ultrastruktura MeSH
- molekulární evoluce MeSH
- Polychaeta parazitologie MeSH
- spory hub ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Rusko MeSH
UNLABELLED: Arthroderma is the most diverse genus among dermatophytes encompassing species occurring in soil, caves, animal burrows, clinical material and other environments. In this study, we collected ex-type, reference and authentic strains of all currently accepted Arthroderma species and generated sequences of three highly variable loci (ITS rDNA, β-tubulin, and translation elongation factor 1-α). The number of accepted species was expanded to 27. One novel species, A. melbournense (ex-type strain CCF 6162T = CBS 145858T), is described. This species was isolated from toenail dust collected by a podiatrist in Melbourne, during an epidemiological study of four geographical regions of Eastern Australia. Trichophyton terrestre, Chrysosporium magnisporum, and Chrysosporium oceanitis are transferred to Arthroderma. Typification is provided for T. terrestre that is not conspecific with any of the supposed biological species from the former T. terrestre complex, that is, A. insingulare, A. lenticulare and A. quadrifidum. A multi-gene phylogeny and reference sequences provided in this study should serve as a basis for future phylogenetic studies and facilitate species identification in practice. LAY ABSTRACT: The genus Arthroderma encompasses geophilic dermatophyte species that infrequently cause human and animal superficial infections. Reference sequences from three genetic loci were generated for all currently accepted Arthroderma species and phylogeny was constructed. Several taxonomic novelties are introduced. The newly provided data will facilitate species identification and future taxonomic studies.
- Klíčová slova
- Arthroderma, Trichophyton terrestre, geophilic dermatophytes, keratinophilic fungi, multigene phylogeny,
- MeSH
- Arthrodermataceae klasifikace genetika MeSH
- DNA fungální genetika MeSH
- elongační faktor 1 genetika MeSH
- fylogeneze * MeSH
- geny hub genetika MeSH
- lidé MeSH
- mezerníky ribozomální DNA genetika MeSH
- Microsporum klasifikace genetika MeSH
- Trichophyton klasifikace genetika MeSH
- tubulin genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Austrálie MeSH
- Názvy látek
- DNA fungální MeSH
- elongační faktor 1 MeSH
- mezerníky ribozomální DNA MeSH
- tubulin MeSH
Native American hawkweeds are mainly mountainous species that are distributed all over the New World. They are severely understudied with respect to their origin, colonization of the vast distribution area, and species relationships. Here, we attempt to reconstruct the evolutionary history of the group by applying seven molecular markers (plastid, nuclear ribosomal and low-copy genes). Phylogenetic analyses revealed that Chionoracium is a subgenus of the mainly Eurasian genus Hieracium, which originated from eastern European hawkweeds about 1.58-2.24 million years ago. Plastid DNA suggested a single origin of all Chionoracium species. They colonized the New World via Beringia and formed several distinct lineages in North America. Via one Central American lineage, the group colonized South America and radiated into more than a hundred species within about 0.8 million years, long after the closure of the Isthmus of Panama and the most recent uplift of the Andes. Despite some incongruences shown by different markers, most of them revealed the same crown groups of closely related taxa, which were, however, largely in conflict with traditional sectional classifications. We provide a basic framework for further elucidation of speciation patterns. A thorough taxonomic revision of Hieracium subgen. Chionoracium is recommended.
- Klíčová slova
- Chionoracium, Hieracium, Stenotheca, molecular dating, molecular markers, phylogenetic analysis,
- Publikační typ
- časopisecké články MeSH
Euglenids are a well-known group of single-celled eukaryotes, with phototrophic, osmotrophic and phagotrophic members. Phagotrophs represent most of the phylogenetic diversity of euglenids, and gave rise to the phototrophs and osmotrophs, but their evolutionary relationships are poorly understood. Symbiontids, in contrast, are anaerobes that are alternatively inferred to be derived euglenids, or a separate euglenozoan group. Most phylogenetic studies of euglenids have examined the SSU rDNA only, which is often highly divergent. Also, many phagotrophic euglenids (and symbiontids) are uncultured, restricting collection of other molecular data. We generated transcriptome data for 28 taxa, mostly using a single-cell approach, and conducted the first multigene phylogenetic analyses of euglenids to include phagotrophs and symbiontids. Euglenids are recovered as monophyletic, with symbiontids forming an independent branch within Euglenozoa. Spirocuta, the clade of flexible euglenids that contains both the phototrophs (Euglenophyceae) and osmotrophs (Aphagea), is robustly resolved, with the ploeotid Olkasia as its sister group, forming the new taxon Olkaspira. Ploeotids are paraphyletic, although Ploeotiidae (represented by Ploeotia spp.), Lentomonas, and Keelungia form a robust clade (new taxon Alistosa). Petalomonadida branches robustly as sister to other euglenids in outgroup-rooted analyses. Within Spirocuta, Euglenophyceae is a robust clade that includes Rapaza, and Anisonemia is a well-supported monophyletic group containing Anisonemidae (Anisonema and Dinema spp.), 'Heteronema II' (represented by H. vittatum), and a clade of Neometanema plus Aphagea. Among 'peranemid' phagotrophs, Chasmostoma branches with included Urceolus, and Peranema with the undescribed 'Jenningsia II', while other relationships are weakly supported and consequently the closest sister group to Euglenophyceae remains unresolved. Our results are inconsistent with recent inferences that Entosiphon is the evolutionarily pivotal sister either to other euglenids, or to Spirocuta. At least three transitions between posterior and anterior flagellar gliding occurred in euglenids, with the phylogenetic positions and directions of those transitions remaining ambiguous.
- Klíčová slova
- Cell motility, Euglenozoa, Phylogenomics, Protozoa, Spirocuta, Symbiontida,
- MeSH
- biologická evoluce MeSH
- Euglenida klasifikace genetika MeSH
- fylogeneze * MeSH
- transkriptom * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Junghuhnia is a genus of polypores traditionally characterised by a dimitic hyphal system with clamped generative hyphae and presence of encrusted skeletocystidia. However, recent molecular studies revealed that Junghuhnia is polyphyletic and most of the species cluster with Steccherinum, a morphologically similar genus separated only by a hydnoid hymenophore. In the Neotropics, very little is known about the evolutionary relationships of Junghuhnia s.lat. taxa and very few species have been included in molecular studies. In order to test the proper phylogenetic placement of Neotropical species of this group, morphological and molecular analyses were carried out. Specimens were collected in Brazil and used for DNA sequence analyses of the internal transcribed spacer and the large subunit of the nuclear ribosomal RNA gene, the translation elongation factor 1-α gene, and the second largest subunit of RNA polymerase II gene. Herbarium collections, including type specimens, were studied for morphological comparison and to confirm the identity of collections. The molecular data obtained revealed that the studied species are placed in three different genera. Specimens of Junghuhnia carneola represent two distinct species that group in a lineage within the phlebioid clade, separated from Junghuhnia and Steccherinum, which belong to the residual polyporoid clade. Therefore, the new genus Geesterania is proposed including two species, G. carneola comb. nov. and G. davidii sp. nov. Neotropical specimens identified as Junghuhnia nitida represent a different lineage from the European species and are described as Steccherinum neonitidum sp. nov. In addition, the new combinations Steccherinum meridionale, Steccherinum polycystidiferum and Steccherinum undigerum, as well as the new name Flaviporus tenuis, are proposed.
- Klíčová slova
- Mycodiversity, Steccherinaceae, phylogeny, taxonomy,
- Publikační typ
- časopisecké články MeSH
This study looked for correlations between molecular identification, clinical manifestation, and morphology for Trichophyton interdigitale and Trichophyton mentagrophytes. For this purpose, a total of 110 isolates were obtained from Czech patients with various clinical manifestations of dermatophytosis. Phenotypic characters were analyzed, and the strains were characterized using multilocus sequence typing. Among the 12 measured/scored phenotypic features, statistically significant differences were found only in growth rates at 37 °C and in the production of spiral hyphae, but none of these features is diagnostic. Correlations were found between T. interdigitale and higher age of patients and between clinical manifestations such as tinea pedis or onychomychosis. The MLST approach showed that internal transcribed spacer (ITS) genotyping of T. mentagrophytes isolates has limited practical benefits because of extensive gene flow between sublineages. Based on our results and previous studies, there are few taxonomic arguments for preserving both species names. The species show a lack of monophyly and unique morphology. On the other hand, some genotypes are associated with predominant clinical manifestations and sources of infections, which keep those names alive. This practice is questionable because the use of both names confuses identification, leading to difficulty in comparing epidemiological studies. The current identification method using ITS genotyping is ambiguous for some isolates and is not user-friendly. Additionally, identification tools such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fail to distinguish these species. To avoid further confusion and to simplify identification in practice, we recommend using the name T. mentagrophytes for the entire complex. When clear differentiation of populations corresponding to T. interdigitale and Trichophyton indotineae is possible based on molecular data, we recommend optionally using a variety rank: T. mentagrophytes var. interdigitale and T. mentagrophytes var. indotineae.
Species in the T. mentagrophytes complex lack support from usual taxonomic methods and simple identification tools are missing or inaccurate. To avoid recurring confusions, we propose naming the entire complex as T. mentagrophytes and optionally use rank variety to classify the observed variability.
- Klíčová slova
- anthropophilic dermatophytes, dermatophytosis, multigene phylogeny, skin infections, zoophilic dermatophytes,
- MeSH
- Arthrodermataceae MeSH
- DNA fungální genetika chemie MeSH
- fenotyp MeSH
- fylogeneze MeSH
- mezerníky ribozomální DNA genetika chemie MeSH
- multilokusová sekvenční typizace veterinární MeSH
- sekvenční analýza DNA veterinární MeSH
- tinea * diagnóza veterinární MeSH
- Trichophyton MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA fungální MeSH
- mezerníky ribozomální DNA MeSH