Reproducible software
Dotaz
Zobrazit nápovědu
Systems biology aims to understand living organisms through mathematically modeling their behaviors at different organizational levels, ranging from molecules to populations. Modeling involves several steps, from determining the model purpose to developing the mathematical model, implementing it computationally, simulating the model's behavior, evaluating, and refining the model. Importantly, model simulation results must be reproducible, ensuring that other researchers can obtain the same results after writing the code de novo and/or using different software tools. Guidelines to increase model reproducibility have been published. However, reproducibility remains a major challenge in this field. In this paper, we tackle this challenge for physiologically-based pharmacokinetic (PBPK) models, which represent the pharmacokinetics of chemicals following exposure in humans or animals. We summarize recommendations for PBPK model reporting that should apply during model development and implementation, in order to ensure model reproducibility and comprehensibility. We make a proposal aiming to harmonize abbreviations used in PBPK models. To illustrate these recommendations, we present an original and reproducible PBPK model code in MATLAB, alongside an example of MATLAB code converted to Systems Biology Markup Language format using MOCCASIN. As directions for future improvement, more tools to convert computational PBPK models from different software platforms into standard formats would increase the interoperability of these models. The application of other systems biology standards to PBPK models is encouraged. This work is the result of an interdisciplinary collaboration involving the ELIXIR systems biology community. More interdisciplinary collaborations like this would facilitate further harmonization and application of good modeling practices in different systems biology fields.
- Klíčová slova
- MATLAB, SBML, model code, pharmacokinetics, reproducibility, systems biology,
- MeSH
- biologické modely * MeSH
- farmakokinetika * MeSH
- lidé MeSH
- počítačová simulace MeSH
- reprodukovatelnost výsledků MeSH
- software * MeSH
- systémová biologie * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Image processing in cryogenic electron tomography (cryoET) is currently at a similar state as Single Particle Analysis (SPA) in cryogenic electron microscopy (cryoEM) was a few years ago. Its data processing workflows are far from being well defined and the user experience is still not smooth. Moreover, file formats of different software packages and their associated metadata are not standardized, mainly since different packages are developed by different groups, focusing on different steps of the data processing pipeline. The Scipion framework, originally developed for SPA (de la Rosa-Trevín et al., 2016), has a generic python workflow engine that gives it the versatility to be extended to other fields, as demonstrated for model building (Martínez et al., 2020). In this article, we provide an extension of Scipion based on a set of tomography plugins (referred to as ScipionTomo hereafter), with a similar purpose: to allow users to be focused on the data processing and analysis instead of having to deal with multiple software installation issues and the inconvenience of switching from one to another, converting metadata files, managing possible incompatibilities, scripting (writing a simple program in a language that the computer must convert to machine language each time the program is run), etcetera. Additionally, having all the software available in an integrated platform allows comparing the results of different algorithms trying to solve the same problem. In this way, the commonalities and differences between estimated parameters shed light on which results can be more trusted than others. ScipionTomo is developed by a collaborative multidisciplinary team composed of Scipion team engineers, structural biologists, and in some cases, the developers whose software packages have been integrated. It is open to anyone in the field willing to contribute to this project. The result is a framework extension that combines the acquired knowledge of Scipion developers in close collaboration with third-party developers, and the on-demand design of functionalities requested by beta testers applying this solution to actual biological problems.
The spinal cord plays a pivotal role in the central nervous system, providing communication between the brain and the body and containing critical motor and sensory networks. Recent advancements in spinal cord MRI data acquisition and image analysis have shown a potential to improve the diagnostics, prognosis, and management of a variety of pathological conditions. In this review, we first discuss the significance of standardized spinal cord MRI acquisition protocol in multi-center and multi-manufacturer studies. Then, we cover open-access spinal cord MRI datasets, which are important for reproducible science and validation of new methods. Finally, we elaborate on the recent advances in spinal cord MRI data analysis techniques implemented in the open-source software package Spinal Cord Toolbox (SCT).
- Klíčová slova
- quantitative magnetic resonance imaging, reproducibility, spinal cord, spinal cord toolbox,
- MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mícha * diagnostické zobrazování MeSH
- počítačové zpracování obrazu metody MeSH
- reprodukovatelnost výsledků MeSH
- software * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Proton magnetic resonance spectroscopy is a non-invasive measurement technique which provides information about concentrations of up to 20 metabolites participating in intracellular biochemical processes. In order to obtain any metabolic information from measured spectra a processing should be done in specialized software, like jMRUI. The processing is interactive and complex and often requires many trials before obtaining a correct result. This paper proposes a jMRUI enhancement for efficient and unambiguous history tracking and file identification. RESULTS: A database storing all processing steps, parameters and files used in processing was developed for jMRUI. The solution was developed in Java, authors used a SQL database for robust storage of parameters and SHA-256 hash code for unambiguous file identification. The developed system was integrated directly in jMRUI and it will be publically available. A graphical user interface was implemented in order to make the user experience more comfortable. The database operation is invisible from the point of view of the common user, all tracking operations are performed in the background. CONCLUSIONS: The implemented jMRUI database is a tool that can significantly help the user to track the processing history performed on data in jMRUI. The created tool is oriented to be user-friendly, robust and easy to use. The database GUI allows the user to browse the whole processing history of a selected file and learn e.g. what processing lead to the results, where the original data are stored, to obtain the list of all processing actions performed on spectra.
- Klíčová slova
- Magnetic Resonance Spectroscopy, SQL database, Signal Processing, jMRUI,
- MeSH
- algoritmy MeSH
- automatizované zpracování dat * MeSH
- databáze faktografické MeSH
- magnetická rezonanční spektroskopie * MeSH
- magnetická rezonanční tomografie * MeSH
- reprodukovatelnost výsledků MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
Untargeted mass spectrometry (MS) experiments produce complex, multidimensional data that are practically impossible to investigate manually. For this reason, computational pipelines are needed to extract relevant information from raw spectral data and convert it into a more comprehensible format. Depending on the sample type and/or goal of the study, a variety of MS platforms can be used for such analysis. MZmine is an open-source software for the processing of raw spectral data generated by different MS platforms. Examples include liquid chromatography-MS, gas chromatography-MS and MS-imaging. These data might typically be associated with various applications including metabolomics and lipidomics. Moreover, the third version of the software, described herein, supports the processing of ion mobility spectrometry (IMS) data. The present protocol provides three distinct procedures to perform feature detection and annotation of untargeted MS data produced by different instrumental setups: liquid chromatography-(IMS-)MS, gas chromatography-MS and (IMS-)MS imaging. For training purposes, example datasets are provided together with configuration batch files (i.e., list of processing steps and parameters) to allow new users to easily replicate the described workflows. Depending on the number of data files and available computing resources, we anticipate this to take between 2 and 24 h for new MZmine users and nonexperts. Within each procedure, we provide a detailed description for all processing parameters together with instructions/recommendations for their optimization. The main generated outputs are represented by aligned feature tables and fragmentation spectra lists that can be used by other third-party tools for further downstream analysis.
- MeSH
- chromatografie kapalinová metody MeSH
- hmotnostní spektrometrie * metody MeSH
- iontová mobilní spektrometrie metody MeSH
- metabolomika metody MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- reprodukovatelnost výsledků MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In recent years the software coincidence counting system, designed for absolute activity measurement, has been developed in the Czech Metrology Institute. In this system a true coincidence count rate is calculated from the records of time and amplitude data of individual pulses and may be determined by two different methods. The first one uses a coincidence resolving time, in a manner similar to a classical coincidence measurement. The second method applies the pulse mixing method formulae, so that it does not use the resolving time and the correction for accidental coincidences. Both methods have been tested on the same data from a 4pibeta (PC)-gamma coincidence measurement of 60Co sources. The difference between the results obtained from both calculation methods applied on the data from the same measurement did not exceed 0.015%. The details of both methods and the results of their comparison are presented.
- MeSH
- algoritmy * MeSH
- beta částice MeSH
- počítačové zpracování signálu * MeSH
- radiometrie metody MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- software * MeSH
- validace softwaru * MeSH
- záření gama * MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- srovnávací studie MeSH
- validační studie MeSH
Although the likelihood ratio is a well-known statistical technique, commercial off-the-shelf (COTS) software products for its calculation are not sufficiently validated to suit general requirements for the competence of testing and calibration laboratories (EN/ISO/IEC 17025:2005 norm) per se. The software in question can be considered critical as it directly weighs the forensic evidence allowing judges to decide on guilt or innocence or to identify person or kin (i.e.: in mass fatalities). For these reasons, accredited laboratories shall validate likelihood ratio software in accordance with the above norm. To validate software for calculating the likelihood ratio in parentage/kinship scenarios I assessed available vendors, chose two programs (Paternity Index and familias) for testing, and finally validated them using tests derived from elaboration of the available guidelines for the field of forensics, biomedicine, and software engineering. MS Excel calculation using known likelihood ratio formulas or peer-reviewed results of difficult paternity cases were used as a reference. Using seven testing cases, it was found that both programs satisfied the requirements for basic paternity cases. However, only a combination of two software programs fulfills the criteria needed for our purpose in the whole spectrum of functions under validation with the exceptions of providing algebraic formulas in cases of mutation and/or silent allele.
Fibre type determination requires a large series of differently stained muscle sections. The manual identification of individual fibres through the series is tedious and time consuming. This paper presents a software that enables (i) adjusting the position of individual fibres through a series of differently stained sections (image registration) and identification of individual fibres through the series as well as (ii) muscle fibre classification and (iii) quantitative analysis. The data output of the system is the following: numerical and areal proportions of fibre types, fibre type size and optical density (grey level) of the final reaction product in every fibre. The muscle fibre type can be determined stepwise, based on one set of stained sections while further, newly stained sections can be added to the already defined muscle fibre profile. Several advantages of the presented software application in skeletal muscle research are presented. The system is semiquantitative, flexible, and user friendly.
- MeSH
- hybridizace in situ MeSH
- imunohistochemie MeSH
- kosterní svalová vlákna klasifikace cytologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- musculus masseter cytologie MeSH
- myosiny genetika metabolismus MeSH
- počítačové zpracování obrazu metody MeSH
- protein - isoformy genetika metabolismus MeSH
- reprodukovatelnost výsledků MeSH
- software * MeSH
- těžké řetězce myosinu genetika metabolismus MeSH
- uživatelské rozhraní počítače MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- myosiny MeSH
- protein - isoformy MeSH
- těžké řetězce myosinu MeSH
The activities of 54Mn and 65Zn have been determined by 4pi(PC)-gamma coincidence counting, with efficiency variation performed by the conventional method of altering the self-absorption in the sources as well as by the computer discrimination method. The standardisation of 65Zn presents some complications requiring optimisation of the gamma-ray energy window settings to achieve a linear efficiency-extrapolation curve. Determination of these optimal settings by the conventional coincidence method is a tedious task. These difficulties have been reduced by the utilisation of a software coincidence counting system that records time and amplitude information of individual pulses from coincidence measurements, where the coincidence parameters are set after the data collection process has completed, facilitating multiple data evaluations on a single data set. The optimal gamma-ray energy window settings for the 65Zn standardisation were derived from the results of the 54Mn standardisation, as well as from studies of the 65Zn data itself. The setting of the PC channel thresholds for K and both (K+L) electrons is also discussed. The results are compared with those attained using conventional coincidence counting.
- MeSH
- algoritmy MeSH
- dávka záření MeSH
- mangan analýza normy MeSH
- radioizotopy zinku analýza normy MeSH
- radionuklidy analýza normy MeSH
- referenční hodnoty MeSH
- referenční standardy MeSH
- reprodukovatelnost výsledků MeSH
- scintilace - počítání metody normy MeSH
- senzitivita a specificita MeSH
- směrnice jako téma MeSH
- software * MeSH
- spektrometrie gama metody normy MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- mangan MeSH
- radioizotopy zinku MeSH
- radionuklidy MeSH
Nowadays, cardiovascular diseases represent the most common cause of death in western countries. Among various examination techniques, electrocardiography (ECG) is still a highly valuable tool used for the diagnosis of many cardiovascular disorders. In order to diagnose a person based on ECG, cardiologists can use automatic diagnostic algorithms. Research in this area is still necessary. In order to compare various algorithms correctly, it is necessary to test them on standard annotated databases, such as the Common Standards for Quantitative Electrocardiography (CSE) database. According to Scopus, the CSE database is the second most cited standard database. There were two main objectives in this work. First, new diagnoses were added to the CSE database, which extended its original annotations. Second, new recommendations for diagnostic software quality estimation were established. The ECG recordings were diagnosed by five new cardiologists independently, and in total, 59 different diagnoses were found. Such a large number of diagnoses is unique, even in terms of standard databases. Based on the cardiologists' diagnoses, a four-round consensus (4R consensus) was established. Such a 4R consensus means a correct final diagnosis, which should ideally be the output of any tested classification software. The accuracy of the cardiologists' diagnoses compared with the 4R consensus was the basis for the establishment of accuracy recommendations. The accuracy was determined in terms of sensitivity = 79.20-86.81%, positive predictive value = 79.10-87.11%, and the Jaccard coefficient = 72.21-81.14%, respectively. Within these ranges, the accuracy of the software is comparable with the accuracy of cardiologists. The accuracy quantification of the correct classification is unique. Diagnostic software developers can objectively evaluate the success of their algorithm and promote its further development. The annotations and recommendations proposed in this work will allow for faster development and testing of classification software. As a result, this might facilitate cardiologists' work and lead to faster diagnoses and earlier treatment.
- Klíčová slova
- Annotation of ECG record, CSE database, ECG, ECG classification, Recommendations, Software testing,
- MeSH
- databáze faktografické normy MeSH
- diagnóza počítačová normy MeSH
- elektrokardiografie normy MeSH
- kardiovaskulární nemoci diagnóza MeSH
- lidé MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- směrnice pro lékařskou praxi jako téma * MeSH
- validace softwaru * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH