computational Dotaz Zobrazit nápovědu
Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.
- MeSH
- výpočetní biologie * výchova MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Nigérie MeSH
Enzymes are in high demand for very diverse biotechnological applications. However, natural biocatalysts often need to be engineered for fine-tuning their properties towards the end applications, such as the activity, selectivity, stability to temperature or co-solvents, and solubility. Computational methods are increasingly used in this task, providing predictions that narrow down the space of possible mutations significantly and can enormously reduce the experimental burden. Many computational tools are available as web-based platforms, making them accessible to non-expert users. These platforms are typically user-friendly, contain walk-throughs, and do not require deep expertise and installations. Here we describe some of the most recent outstanding web-tools for enzyme engineering and formulate future perspectives in this field.
- MeSH
- biotechnologie * MeSH
- internet * MeSH
- rozpustnost MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Traditional directed evolution experiments are often time-, labor- and cost-intensive because they involve repeated rounds of random mutagenesis and the selection or screening of large mutant libraries. The efficiency of directed evolution experiments can be significantly improved by targeting mutagenesis to a limited number of hot-spot positions and/or selecting a limited set of substitutions. The design of such "smart" libraries can be greatly facilitated by in silico analyses and predictions. Here we provide an overview of computational tools applicable for (a) the identification of hot-spots for engineering enzyme properties, and (b) the evaluation of predicted hot-spots and selection of suitable amino acids for substitutions. The selected tools do not require any specific expertise and can easily be implemented by the wider scientific community.
Protein engineering strategies aimed at constructing enzymes with novel or improved activities, specificities, and stabilities greatly benefit from in silico methods. Computational methods can be principally grouped into three main categories: bioinformatics; molecular modelling; and de novo design. Particularly de novo protein design is experiencing rapid development, resulting in more robust and reliable predictions. A recent trend in the field is to combine several computational approaches in an interactive manner and to complement them with structural analysis and directed evolution. A detailed investigation of designed catalysts provides valuable information on the structural basis of molecular recognition, biochemical catalysis, and natural protein evolution.
- MeSH
- enzymy genetika MeSH
- lidé MeSH
- molekulární modely MeSH
- mutace MeSH
- proteinové inženýrství metody MeSH
- stabilita enzymů MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- enzymy MeSH
There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.
- MeSH
- bodová mutace genetika fyziologie MeSH
- databáze genetické MeSH
- lyasy chemie genetika metabolismus MeSH
- molekulární modely MeSH
- počítačová simulace MeSH
- proteinové inženýrství metody MeSH
- stabilita enzymů genetika MeSH
- teplota MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lyasy MeSH
Conformational dynamics is crucial for the biological function of RNA molecules and for their potential as therapeutic targets. This meeting report outlines key "take-home" messages that emerged from the presentations and discussions during the CECAM workshop "RNA dynamics from experimental and computational approaches" in Paris, June 26-28, 2023.
- MeSH
- konformace nukleové kyseliny * MeSH
- RNA * metabolismus chemie MeSH
- simulace molekulární dynamiky * MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- kongresy MeSH
- Názvy látek
- RNA * MeSH
Protein tunnels connecting the functional buried cavities with bulk solvent and protein channels, enabling the transport through biological membranes, represent the structural features that govern the exchange rates of ligands, ions, and water solvent. Tunnels and channels are present in a vast number of known proteins and provide control over their function. Modification of these structural features by protein engineering frequently provides proteins with improved properties. Here we present a detailed computational protocol employing the CAVER software that is applicable for: (1) the analysis of tunnels and channels in protein structures, and (2) the selection of hot-spot residues in tunnels or channels that can be mutagenized for improved activity, specificity, enantioselectivity, or stability.
- Klíčová slova
- Binding, CAVER, Channel, Gate, Protein, Rational design, Software, Transport, Tunnel,
- MeSH
- algoritmy MeSH
- konformace proteinů MeSH
- ligandy MeSH
- molekulární modely MeSH
- proteinové inženýrství metody MeSH
- proteiny chemie MeSH
- rozpouštědla chemie MeSH
- software MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- proteiny MeSH
- rozpouštědla MeSH
Integral transforms with kernels corresponding to computational units are exploited to derive estimates of network complexity. The estimates are obtained by combining tools from nonlinear approximation theory and functional analysis together with representations of functions in the form of infinite neural networks. The results are applied to perceptron networks.
- MeSH
- nelineární dynamika MeSH
- neuronové sítě * MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Current computational tools to assist experimentalists for the design and engineering of proteins with desired catalytic properties are reviewed. The applications of these tools for de novo design of protein active sites, optimization of substrate access and product exit pathways, redesign of protein-protein interfaces, identification of neutral/advantageous/deleterious mutations in the libraries from directed evolution and stabilization of protein structures are described. Remarkable progress is seen in de novo design of enzymes catalyzing a chemical reaction for which a natural biocatalyst does not exist. Yet, constructed biocatalysts do not match natural enzymes in their efficiency, suggesting that more research is needed to capture all the important features of natural biocatalysts in theoretical designs.
- MeSH
- biokatalýza MeSH
- katalytická doména MeSH
- ligandy MeSH
- mutace MeSH
- proteinové inženýrství metody trendy MeSH
- proteiny chemie genetika metabolismus MeSH
- stabilita proteinů MeSH
- výpočetní biologie metody trendy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- ligandy MeSH
- proteiny MeSH
BACKGROUND: Today, HIV-1 infection has become an extensive problem to public health and a greater challenge to all working researchers throughout the world. Since the beginning of HIV-1 virus, several antiviral therapeutic agents have been developed at various stages to combat HIV-1 infection. But, many of antiviral drugs are on the platform of drug resistance and toxicology issues, needs an urgent constructive investigation for the development of productive and protective therapeutics to make an improvement of individual life suffering with viral infection. As developing a novel agent is very costly, challenging and time taking route in the recent times. METHODS: The review summarized about the modern approaches of computational aided drug discovery to developing a novel inhibitor within a short period of time and less cost. RESULTS: The outcome suggests on the premise of reported information that the computational drug discovery is a powerful technology to design a defensive and fruitful therapeutic agents to combat HIV-1 infection and recover the lifespan of suffering one. CONCLUSION: Based on survey of the reported information, we concluded that the current computational approaches is highly supportive in the progress of drug discovery and controlling the viral infection.
- Klíčová slova
- AIDS, HIV-1 life cycle, anti-HIV, biological targets, computational drug discovery, drugs, virtual screening.,
- MeSH
- HIV infekce farmakoterapie MeSH
- HIV-1 účinky léků MeSH
- látky proti HIV chemie MeSH
- lidé MeSH
- objevování léků * MeSH
- počítačová simulace * MeSH
- racionální návrh léčiv * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- látky proti HIV MeSH