Sensing rice drought stress is crucial for agriculture, and chlorophyll a fluorescence (ChlF) is often used. However, existing techniques usually rely on defined feature points on the OJIP induction curve, which ignores the rich physiological information in the entire curve. Independent Component Analysis (ICA) can effectively preserve independent features, making it suitable for capturing drought-induced physiological changes. This study applies ICA and Support Vector Machine (SVM) to classify drought levels using the entire OJIP curve. The results show that the 20-dimensional ChlF features obtained by ICA provide superior classification performance, with Accuracy, Precision, Recall, F1-score, and Kappa coefficient improving by 18.15%, 0.18, 0.17, 0.17, and 0.22, respectively, compared to the entire curve. This work provides a rice drought stress levels determination method and highlights the importance of applying dimension reduction methods for ChlF analysis. This work is expected to enhance stress detection using ChlF.
- Keywords
- chlorophyll a fluorescence, dimension reduction, drought, rice,
- MeSH
- Principal Component Analysis MeSH
- Chlorophyll A * metabolism MeSH
- Chlorophyll * metabolism MeSH
- Fluorescence MeSH
- Stress, Physiological * MeSH
- Droughts * MeSH
- Oryza * physiology metabolism MeSH
- Support Vector Machine MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll A * MeSH
- Chlorophyll * MeSH
Recent fMRI resting-state findings show aberrant functional connectivity within somatomotor network (SMN) in schizophrenia. Moreover, functional connectivity aberrations of the motor system are often reported to be related to the severity of psychotic symptoms. Thus, it is important to validate those findings and confirm their relationship with psychopathology. Therefore, we decided to take an entirely data-driven approach in our fMRI resting-state study of 30 chronic schizophrenia outpatients and 30 matched control subjects. We used independent component analysis (ICA), dual regression, and seed-based connectivity analysis. We found reduced functional connectivity within SMN in schizophrenia patients compared to controls and SMN hypoconnectivity with the cerebellum in schizophrenia patients. The latter was strongly correlated with the severity of alogia, one of the main psychotic symptoms, i.e. poverty of speech and reduction in spontaneous speech,. Our results are consistent with the recent knowledge about the role of the cerebellum in cognitive functioning and its abnormalities in psychiatric disorders, e.g. schizophrenia. In conclusion, the presented results, for the first time clearly showed the involvement of the cerebellum hypoconnectivity with SMN in the persistence and severity of alogia symptoms in schizophrenia.
- Keywords
- Cerebellum, Negative symptoms, Schizophrenia, Somatomotor network, fMRI,
- MeSH
- Aphasia physiopathology diagnostic imaging etiology pathology MeSH
- Chronic Disease MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Cerebellum * diagnostic imaging physiopathology MeSH
- Nerve Net diagnostic imaging physiopathology MeSH
- Neural Pathways physiopathology diagnostic imaging MeSH
- Schizophrenia * diagnostic imaging physiopathology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Newborn screening (NBS) of inborn errors of metabolism (IEMs) is based on the reference ranges established on a healthy newborn population using quantile statistics of molar concentrations of biomarkers and their ratios. The aim of this paper is to investigate whether multivariate independent component analysis (ICA) is a useful tool for the analysis of NBS data, and also to address the structure of the calculated ICA scores. NBS data were obtained from a routine NBS program performed between 2013 and 2022. ICA was tested on 10,213/150 free-diseased controls and 77/20 patients (9/3 different IEMs) in the discovery/validation phases, respectively. The same model computed during the discovery phase was used in the validation phase to confirm its validity. The plots of ICA scores were constructed, and the results were evaluated based on 5sd levels. Patient samples from 7/3 different diseases were clearly identified as 5sd-outlying from control groups in both phases of the study. Two IEMs containing only one patient each were separated at the 3sd level in the discovery phase. Moreover, in one latent variable, the effect of neonatal birth weight was evident. The results strongly suggest that ICA, together with an interpretation derived from values of the "average member of the score structure", is generally applicable and has the potential to be included in the decision process in the NBS program.
The independent component analysis (ICA) based methods are among the most prevalent techniques used for non-invasive fetal electrocardiogram (NI-fECG) processing. Often, these methods are combined with other methods, such adaptive algorithms. However, there are many variants of the ICA methods and it is not clear which one is the most suitable for this task. The goal of this study is to test and objectively evaluate 11 variants of ICA methods combined with an adaptive fast transversal filter (FTF) for the purpose of extracting the NI-fECG. The methods were tested on two datasets, Labour dataset and Pregnancy dataset, which contained real records obtained during clinical practice. The efficiency of the methods was evaluated from the perspective of determining the accuracy of detection of QRS complexes through the parameters of accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and harmonic mean between SE and PPV (F1). The best results were achieved with a combination of FastICA and FTF, which yielded mean values of ACC = 83.72%, SE = 92.13%, PPV = 90.16%, and F1 = 91.14%. Time of calculation was also taken into consideration in the methods. Although FastICA was ranked to be the sixth fastest with its mean computation time of 0.452 s, it had the best ratio of performance and speed. The combination of FastICA and adaptive FTF filter turned out to be very promising. In addition, such device would require signals acquired from the abdominal area only; no need to acquire reference signal from the mother's chest.
This publication describes an innovative approach to voice control of operational and technical functions in a real Smart Home (SH) environment, where, for voice control within SH, it is necessary to provide robust technological systems for building automation and for technology visualization, software for recognition of individual voice commands, and a robust system for additive noise canceling. The KNX technology for building automation is used and described in the article. The LabVIEW SW tool is used for visualization, data connectivity to the speech recognizer, connection to the sound card, and the actual mathematical calculations within additive noise canceling. For the actual recognition of commands, the SW tool for recognition within the Microsoft Windows OS is used. In the article, the least mean squares algorithm (LMS) and independent component analysis (ICA) are used for additive noise canceling from the speech signal measured in a real SH environment. Within the proposed experiments, the success rate of voice command recognition for different types of additive interference (television, vacuum cleaner, washing machine, dishwasher, and fan) in the real SH environment was compared. The recognition success rate was greater than 95% for the selected experiments.
- Keywords
- LabVIEW, Smart Home (SH), automatic speech recognition, independent component analysis (ICA), least mean squares algorithm (LMS),
- Publication type
- Journal Article MeSH
This paper addresses the overlearning problem in the independent component analysis (ICA) used for the removal of muscular artifacts from electroencephalographic (EEG) records. We note that for short EEG records with high number of channels the ICA fails to separate artifact-free EEG and muscular artifacts, which has been previously attributed to the phenomenon called overlearning. We address this problem by projecting an EEG record into several subspaces with a lower dimension, and perform the ICA on each subspace separately. Due to a reduced dimension of the subspaces, the overlearning is suppressed, and muscular artifacts are better separated. Once the muscular artifacts are removed, the signals in the individual subspaces are combined to provide an artifact free EEG record. We show that for short signals and high number of EEG channels our approach outperforms the currently available ICA based algorithms for muscular artifact removal. The proposed technique can efficiently suppress ICA overlearning for short signal segments of high density EEG signals.
- MeSH
- Algorithms * MeSH
- Artifacts * MeSH
- Electroencephalography * methods MeSH
- Electromyography methods MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Signal Processing, Computer-Assisted * MeSH
- Overlearning MeSH
- Muscles physiology MeSH
- Check Tag
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
Non-adaptive signal processing methods have been successfully applied to extract fetal electrocardiograms (fECGs) from maternal abdominal electrocardiograms (aECGs); and initial tests to evaluate the efficacy of these methods have been carried out by using synthetic data. Nevertheless, performance evaluation of such methods using real data is a much more challenging task and has neither been fully undertaken nor reported in the literature. Therefore, in this investigation, we aimed to compare the effectiveness of two popular non-adaptive methods (the ICA and PCA) to explore the non-invasive (NI) extraction (separation) of fECGs, also known as NI-fECGs from aECGs. The performance of these well-known methods was enhanced by an adaptive algorithm, compensating amplitude difference and time shift between the estimated components. We used real signals compiled in 12 recordings (real01-real12). Five of the recordings were from the publicly available database (PhysioNet-Abdominal and Direct Fetal Electrocardiogram Database), which included data recorded by multiple abdominal electrodes. Seven more recordings were acquired by measurements performed at the Institute of Medical Technology and Equipment, Zabrze, Poland. Therefore, in total we used 60 min of data (i.e., around 88,000 R waves) for our experiments. This dataset covers different gestational ages, fetal positions, fetal positions, maternal body mass indices (BMI), etc. Such a unique heterogeneous dataset of sufficient length combining continuous Fetal Scalp Electrode (FSE) acquired and abdominal ECG recordings allows for robust testing of the applied ICA and PCA methods. The performance of these signal separation methods was then comprehensively evaluated by comparing the fetal Heart Rate (fHR) values determined from the extracted fECGs with those calculated from the fECG signals recorded directly by means of a reference FSE. Additionally, we tested the possibility of non-invasive ST analysis (NI-STAN) by determining the T/QRS ratio. Our results demonstrated that even though these advanced signal processing methods are suitable for the non-invasive estimation and monitoring of the fHR information from maternal aECG signals, their utility for further morphological analysis of the extracted fECG signals remains questionable and warrants further work.
- Keywords
- electronic fetal monitoring (EFM), fetal electrocardiogram (fECG), independent component analysis (ICA), non-invasive ST analysis (NI-STAN), non-invasive fetal ECG (NI-fECG), non-invasive fetal heart rate (NI-fHR) estimation, nonadaptive methods, principal component analysis (PCA),
- Publication type
- Journal Article MeSH
Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.
- Keywords
- EEG, ICA, Multi-subject blind source separation, Resting-state, Semantic decision, Spatiospectral patterns, Visual oddball,
- MeSH
- Algorithms MeSH
- Principal Component Analysis MeSH
- Electroencephalography methods statistics & numerical data MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain Mapping methods MeSH
- Young Adult MeSH
- Signal Processing, Computer-Assisted MeSH
- Psychomotor Performance physiology MeSH
- Reproducibility of Results MeSH
- Decision Making physiology MeSH
- Cluster Analysis MeSH
- Visual Perception physiology MeSH
- Check Tag
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Different strategies have been developed using Independent Component Analysis (ICA) to automatically de-noise fMRI data, either focusing on removing only certain components (e.g. motion-ICA-AROMA, Pruim et al., 2015a) or using more complex classifiers to remove multiple types of noise components (e.g. FIX, Salimi-Khorshidi et al., 2014 Griffanti et al., 2014). However, denoising data obtained in an acute setting might prove challenging: the presence of multiple noise sources may not allow focused strategies to clean the data enough and the heterogeneity in the data may be so great to critically undermine complex approaches. The purpose of this study was to explore what automated ICA based approach would better cope with these limitations when cleaning fMRI data obtained from acute stroke patients. The performance of a focused classifier (ICA-AROMA) and a complex classifier (FIX) approaches were compared using data obtained from twenty consecutive acute lacunar stroke patients using metrics determining RSN identification, RSN reproducibility, changes in the BOLD variance, differences in the estimation of functional connectivity and loss of temporal degrees of freedom. The use of generic-trained FIX resulted in misclassification of components and significant loss of signal (< 80%), and was not explored further. Both ICA-AROMA and patient-trained FIX based denoising approaches resulted in significantly improved RSN reproducibility (p < 0.001), localized reduction in BOLD variance consistent with noise removal, and significant changes in functional connectivity (p < 0.001). Patient-trained FIX resulted in higher RSN identifiability (p < 0.001) and wider changes both in the BOLD variance and in functional connectivity compared to ICA-AROMA. The success of ICA-AROMA suggests that by focusing on selected components the full automation can deliver meaningful data for analysis even in population with multiple sources of noise. However, the time invested to train FIX with appropriate patient data proved valuable, particularly in improving the signal-to-noise ratio.
- Keywords
- Acute stroke, BOLD, Denoising, Independent component analysis, Resting state, fMRI,
- MeSH
- Principal Component Analysis * MeSH
- Stroke diagnostic imaging MeSH
- Oxygen blood MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Neural Pathways diagnostic imaging MeSH
- Image Processing, Computer-Assisted * MeSH
- Reproducibility of Results MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Oxygen MeSH
BACKGROUND: The phenomenology of the clinical symptoms indicates that disturbance of the sense of self be a core marker of schizophrenia. AIMS: To compare neural activity related to the self/other-agency judgment in patients with first-episode schizophrenia-spectrum disorders (FES, n = 35) and healthy controls (HC, n = 35). METHOD: A functional magnetic resonance imaging (fMRI) using motor task with temporal distortion of the visual feedback was employed. A task-related functional connectivity was analyzed with the use of independent component analysis (ICA). RESULTS: (1) During self-agency experience, FES showed a deficit in cortical activation in medial frontal gyrus (BA 10) and posterior cingulate gyrus, (BA 31; P < .05, Family-Wise Error [FWE] corrected). (2) Pooled-sample task-related ICA revealed that the self/other-agency judgment was dependent upon anti-correlated default mode and central-executive networks (DMN/CEN) dynamic switching. This antagonistic mechanism was substantially impaired in FES during the task. DISCUSSION: During self-agency experience, FES demonstrate deficit in engagement of cortical midline structures along with substantial attenuation of anti-correlated DMN/CEN activity underlying normal self/other-agency discriminative processes.
- Keywords
- fMRI, first-episode schizophrenia, independent component analysis, neuroimaging, self-agency,
- MeSH
- Gyrus Cinguli physiopathology MeSH
- Adult MeSH
- Connectome methods MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Nerve Net physiopathology MeSH
- Perceptual Disorders etiology physiopathology MeSH
- Motor Activity MeSH
- Prefrontal Cortex physiopathology MeSH
- Psychomotor Performance MeSH
- Schizophrenia complications physiopathology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH