oxacillinase OR C108449 Dotaz Zobrazit nápovědu
Oxacillinases (OXA) have been mostly described in Enterobacteriaceae, Acinetobacter, and Pseudomonas species. Recent years have witnessed an increased prevalence of intrinsic and/or acquired β-lactamase-producing Acinetobacter in food-producing animals. This study was conducted to assess the prevalence of OXA among selected bacterial species and to characterize these enzymes by in silico analysis. Screening of OXA was performed by PCR amplification using specific pairs of oligonucleotides. Overall, 40 pairs of primers were designed, of which 6 were experimentally tested in vitro. Among 49 bacterial isolates examined, the presence of blaOXA-1-like genes was confirmed in 20 cases (41%; 19 times in Klebsiella pneumoniae and once in Enterobacter cloacae). No OXA were found in animal isolates. The study results confirmed the specificity of the designed oligonucleotide pairs. Furthermore, the designed primers were found to possess the ability to specifically detect 90.2% of all OXA. These facts suggest that the in silico and in vitro tested primers could be used for single or multiplex PCR to screen for the presence of OXA in various bacteria, as well as to monitor their spread. At the same time, the presence of conserved characteristic amino acids and motifs was confirmed by in silico analysis of sequences of representative members of OXA.
- Klíčová slova
- PCR, antibiotic resistance, oxacillinases, primers,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální proteiny genetika metabolismus MeSH
- beta-laktamasy genetika metabolismus MeSH
- DNA primery chemická syntéza metabolismus MeSH
- Enterobacter cloacae klasifikace účinky léků enzymologie genetika MeSH
- Escherichia coli klasifikace účinky léků enzymologie genetika MeSH
- exprese genu MeSH
- fylogeneze MeSH
- gramnegativní bakteriální infekce diagnóza epidemiologie mikrobiologie veterinární MeSH
- Klebsiella pneumoniae klasifikace účinky léků enzymologie genetika MeSH
- kur domácí mikrobiologie MeSH
- lidé MeSH
- maso mikrobiologie MeSH
- mikrobiální testy citlivosti MeSH
- multiplexová polymerázová řetězová reakce metody MeSH
- peniciliny farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- beta-laktamasy MeSH
- DNA primery MeSH
- oxacillinase MeSH Prohlížeč
- peniciliny MeSH
Increasing antimicrobial resistance of nosocomial pathogens is becoming a serious threat to public health. To control the spread of this resistance, it is necessary to detect β-lactamase-producing organisms in the clinical setting. The aims of the study were to design a PCR assay for rapid detection of clinically encountered β-lactamase genes described in Enterobacteriaceae and Gram-negative non-fermenting bacteria. The functionality of proposed primers was verified using eight reference strains and 17 strains from our collection, which contained 29 different β-lactamase genes. PCR products of the test strains were confirmed by Sanger sequencing. Sequence analysis was performed using bioinformatics software Geneious. Overall, 67 pairs of primers for detecting 12 members of the class C β-lactamase family, 15 members of class A β-lactamases, six gene families of subclass B1, one member each of subclasses B2, B3 and class D β-lactamases were designed, of which 43 pairs were experimentally tested in vitro. All 29 β-lactamase genes, including 10 oxacillinase subgroups, were correctly identified by PCR. The proposed set of primers should be able to specifically detect 99.7% of analyzed β-lactamase subtypes and more than 79.8% of all described β-lactamase genes.
- Klíčová slova
- β-lactamase, PCR, antibiotic resistance, bacteria, primer,
- MeSH
- Bacteria enzymologie genetika izolace a purifikace MeSH
- bakteriologické techniky * MeSH
- beta-laktamasy genetika metabolismus MeSH
- beta-laktamová rezistence genetika MeSH
- DNA bakterií genetika MeSH
- DNA primery MeSH
- lidé MeSH
- polymerázová řetězová reakce * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-laktamasy MeSH
- DNA bakterií MeSH
- DNA primery MeSH
Antibiotics are still used to treat mastitis in dairy cows in Indonesia. This study aimed to analyse antibiotic resistance genes in Escherichia coli (E. coli) from subclinical mastitis milk in East Java Province, Indonesia. The samples consisted of subclinical mastitis milk from cows and goats. A total of 592-quarter cow's milk and 71 goat's milk samples from both halves of the udder were collected from 67 farms in Lumajang, Banyuwangi, Malang, Sidoarjo, Jember, Pasuruan, Probolinggo, and Mojokerto. Subclinical mastitis samples were screened using the California mastitis test (CMT). E. coli was identified by phenotypic and genotypic methods. E. coli was confirmed with a primer specific to the polymerase chain reaction (PCR) technique. Gene resistance of E. coli was tested using the multiplex-PCR (mPCR) technique with primers encoding the genes temoneira enzyme (TEM), oxacillinase (OXA), sulfhydryl variable (SHV), and cefotaximase-munich IV (CTX-M IV). These genes were chosen because mastitis treatment generally uses oxacilline and β-lactam antibiotics. All data obtained were analysed descriptively. The results show that six isolates of E. coli (46.15%) carried a single resistance gene (TEM or SHV) and two isolates (33.33%) were confirmed as multiple drug-resistant organisms (MDROs) (TEM and SHV). The resistance genes were found in samples originating from Blitar, Banyuwangi, Lumajang, and Pasuruan Regencies. This research implies that antibiotic-resistance genes found in E. coli on certain farms are dangerous and may allow gene transmission to other bacteria that make treatment for mastitis or other bacterial infections ineffective.
- Klíčová slova
- multiple drug resistant, sulfhydryl variable (SHV), temoneira enzyme (TEM), zoonosis,
- Publikační typ
- časopisecké články MeSH
Klebsiella pneumoniae, one of the most common pathogens found in hospital-acquired infections, is often resistant to multiple antibiotics. In fact, multidrug-resistant (MDR) K. pneumoniae producing KPC or OXA-48-like carbapenemases are recognized as a serious global health threat. In this sense, we evaluated the virulence of K. pneumoniae KPC(+) or OXA-48(+) aiming at potential antimicrobial therapeutics. K. pneumoniae carbapenemase (KPC) and the expanded-spectrum oxacillinase OXA-48 isolates were obtained from patients treated in medical care units in Lisbon, Portugal. The virulence potential of the K. pneumonia clinical isolates was tested using the Galleria mellonella model. For that, G. mellonella larvae were inoculated using patients KPC(+) and OXA-48(+) isolates. Using this in vivo model, the KPC(+) K. pneumoniae isolates showed to be, on average, more virulent than OXA-48(+). Virulence was found attenuated when a low bacterial inoculum (one magnitude lower) was tested. In addition, we also report the use of a synthetic polycationic oligomer (L-OEI-h) as a potential antimicrobial agent to fight infectious diseases caused by MDR bacteria. L-OEI-h has a broad-spectrum antibacterial activity and exerts a significantly bactericidal activity within the first 5-30 min treatment, causing lysis of the cytoplasmic membrane. Importantly, the polycationic oligomer showed low toxicity against in vitro models and no visible cytotoxicity (measured by survival and health index) was noted on the in vivo model (G. mellonella), thus L-OEI-h is foreseen as a promising polymer therapeutic for the treatment of MDR K. pneumoniae infections.
- Klíčová slova
- Galleria mellonella infection model, KPC and OXA-48-like carbapenemases, Klebsiella pneumoniae, linear oligoethyleneimine hydrochloride,
- Publikační typ
- časopisecké články MeSH