-
Je něco špatně v tomto záznamu ?
Activation and detoxification metabolism of urban air pollutants 2-nitrobenzanthrone and carcinogenic 3-nitrobenzanthrone by rat and mouse hepatic microsomes
M. Stiborova, T. Cechova, L. Borek-Dohalska, M. Moserova, E. Frei, HH. Schmeiser, J. Paca, VM. Arlt,
Jazyk angličtina Země Švédsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- adukty DNA metabolismus MeSH
- aerobióza fyziologie MeSH
- anaerobióza fyziologie MeSH
- benz(a)anthraceny farmakokinetika toxicita MeSH
- cytochrom-B(5)-reduktasa genetika metabolismus MeSH
- inbrední kmeny myší MeSH
- jaterní mikrozomy enzymologie MeSH
- karcinogeny farmakokinetika toxicita MeSH
- krysa rodu rattus MeSH
- látky znečišťující vzduch farmakokinetika toxicita MeSH
- metabolická inaktivace fyziologie MeSH
- modely u zvířat MeSH
- myši knockoutované MeSH
- myši MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- potkani Wistar MeSH
- substrátová specifita fyziologie MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- výfukové emise vozidel toxicita MeSH
- zdraví ve městech MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVES: 2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. Understanding which enzymes are involved in metabolism of these toxicants is important in the assessment of individual susceptibility. Here, metabolism of 2-NBA and 3-NBA by rat and mouse hepatic microsomes containing cytochromes P450 (CYPs), their reductase (NADPH:CYP reductase), and NADH:cytochrome b5 reductase was investigated under anaerobic and aerobic conditions. In addition, using the same microsomal systems, 2-NBA and 3-NBA were evaluated to be enzymatically activated under anaerobic conditions to species generating 2-NBA- and 3-NBA-derived DNA adducts. METHODS: High performance liquid chromatography (HPLC) with ultraviolet (UV) detection was employed for the separation and characterization of 2-NBA and 3-NBA metabolites formed by hepatic microsomes of rats and mice under the anaerobic and aerobic conditions. Microsomal systems isolated from the liver of the control (untreated) rats and rats pretreated with Sudan I, β-naphthoflavone (β-NF), phenobarbital (PB), ethanol and pregnenolon 16α-carbonitrile (PCN), the inducers of cytochromes P450 (CYP) 1A1, 1A1/2, 2B, 2E1 and 3A, respectively, were used in this study. Microsomes of mouse models, a control mouse line (wild-type, WT) and Hepatic Cytochrome P450 Reductase Null (HRN) mice with deleted gene of NADPH:CYP reductase in the liver, thus absenting this enzyme in their livers, were also employed. To detect and quantify the 2-NBA- and 3-NBA-derived DNA adducts, the 32P postlabeling technique was used. RESULTS: Both reductive metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), found to be formed predominantly under the anaerobic conditions, and two 3-NBA oxidative metabolites, whose structures have not yet been investigated, were formed by several microsomal systems used in the study. Whereas a 3-NBA reductive metabolite, 3-ABA, was found only in the microsomal systems of control rats, the rats treated with β-NF and PB, and microsomes of WT and HRN mice, all hepatic microsomes tested in the study were capable of activating this carcinogen under the reductive conditions to form DNA adducts. A stability of a reactive intermediate of 3-NBA, N-hydroxy-3-aminobenzanthrone that is formed during 3-NBA reduction to 3-ABA, to form nitrenium (and/or carbenium) ions binding to DNA in individual microsomes as well as binding of these ions to proteins of these microsomes, might be the reasons explaining this phenomenon. In contrast to 3-NBA, its isomer 2-NBA was not metabolized by any of the used enzymatic systems both under the anaerobic and aerobic conditions. Likewise, no DNA adducts were detectable after reaction of 2-NBA in these systems with DNA. CONCLUSIONS: The results found in this study, the first report on the metabolism of 2-NBA and 3-NBA by rat and mouse hepatic microsomes demonstrate that 3-NBA, in contrast to 2-NBA, is reductively activated to form 3-NBA-derived DNA adducts by these enzymatic systems. NADPH:CYP reductase can be responsible for formation of these DNA adducts in rat livers, while NADH:cytochrome b5 reductase can contribute to this process in livers of HRN mice.
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13024007
- 003
- CZ-PrNML
- 005
- 20171215201509.0
- 007
- ta
- 008
- 130703s2012 sw f 000 0|eng||
- 009
- AR
- 035 __
- $a (PubMed)23353838
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sw
- 100 1_
- $a Stiborova, Marie $u Department of Biochemistry, Charles University, Prague, Czech Republic. stiborov@natur.cuni.cz
- 245 10
- $a Activation and detoxification metabolism of urban air pollutants 2-nitrobenzanthrone and carcinogenic 3-nitrobenzanthrone by rat and mouse hepatic microsomes / $c M. Stiborova, T. Cechova, L. Borek-Dohalska, M. Moserova, E. Frei, HH. Schmeiser, J. Paca, VM. Arlt,
- 520 9_
- $a OBJECTIVES: 2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. Understanding which enzymes are involved in metabolism of these toxicants is important in the assessment of individual susceptibility. Here, metabolism of 2-NBA and 3-NBA by rat and mouse hepatic microsomes containing cytochromes P450 (CYPs), their reductase (NADPH:CYP reductase), and NADH:cytochrome b5 reductase was investigated under anaerobic and aerobic conditions. In addition, using the same microsomal systems, 2-NBA and 3-NBA were evaluated to be enzymatically activated under anaerobic conditions to species generating 2-NBA- and 3-NBA-derived DNA adducts. METHODS: High performance liquid chromatography (HPLC) with ultraviolet (UV) detection was employed for the separation and characterization of 2-NBA and 3-NBA metabolites formed by hepatic microsomes of rats and mice under the anaerobic and aerobic conditions. Microsomal systems isolated from the liver of the control (untreated) rats and rats pretreated with Sudan I, β-naphthoflavone (β-NF), phenobarbital (PB), ethanol and pregnenolon 16α-carbonitrile (PCN), the inducers of cytochromes P450 (CYP) 1A1, 1A1/2, 2B, 2E1 and 3A, respectively, were used in this study. Microsomes of mouse models, a control mouse line (wild-type, WT) and Hepatic Cytochrome P450 Reductase Null (HRN) mice with deleted gene of NADPH:CYP reductase in the liver, thus absenting this enzyme in their livers, were also employed. To detect and quantify the 2-NBA- and 3-NBA-derived DNA adducts, the 32P postlabeling technique was used. RESULTS: Both reductive metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), found to be formed predominantly under the anaerobic conditions, and two 3-NBA oxidative metabolites, whose structures have not yet been investigated, were formed by several microsomal systems used in the study. Whereas a 3-NBA reductive metabolite, 3-ABA, was found only in the microsomal systems of control rats, the rats treated with β-NF and PB, and microsomes of WT and HRN mice, all hepatic microsomes tested in the study were capable of activating this carcinogen under the reductive conditions to form DNA adducts. A stability of a reactive intermediate of 3-NBA, N-hydroxy-3-aminobenzanthrone that is formed during 3-NBA reduction to 3-ABA, to form nitrenium (and/or carbenium) ions binding to DNA in individual microsomes as well as binding of these ions to proteins of these microsomes, might be the reasons explaining this phenomenon. In contrast to 3-NBA, its isomer 2-NBA was not metabolized by any of the used enzymatic systems both under the anaerobic and aerobic conditions. Likewise, no DNA adducts were detectable after reaction of 2-NBA in these systems with DNA. CONCLUSIONS: The results found in this study, the first report on the metabolism of 2-NBA and 3-NBA by rat and mouse hepatic microsomes demonstrate that 3-NBA, in contrast to 2-NBA, is reductively activated to form 3-NBA-derived DNA adducts by these enzymatic systems. NADPH:CYP reductase can be responsible for formation of these DNA adducts in rat livers, while NADH:cytochrome b5 reductase can contribute to this process in livers of HRN mice.
- 650 _2
- $a aerobióza $x fyziologie $7 D000332
- 650 _2
- $a látky znečišťující vzduch $x farmakokinetika $x toxicita $7 D000393
- 650 _2
- $a anaerobióza $x fyziologie $7 D000693
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a benz(a)anthraceny $x farmakokinetika $x toxicita $7 D001551
- 650 _2
- $a karcinogeny $x farmakokinetika $x toxicita $7 D002273
- 650 _2
- $a systém (enzymů) cytochromů P-450 $x metabolismus $7 D003577
- 650 _2
- $a cytochrom-B(5)-reduktasa $x genetika $x metabolismus $7 D042966
- 650 _2
- $a adukty DNA $x metabolismus $7 D018736
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a metabolická inaktivace $x fyziologie $7 D008658
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a inbrední kmeny myší $7 D008815
- 650 _2
- $a myši knockoutované $7 D018345
- 650 _2
- $a jaterní mikrozomy $x enzymologie $7 D008862
- 650 _2
- $a modely u zvířat $7 D023421
- 650 _2
- $a NADPH-cytochrom c-reduktasa $x metabolismus $7 D009251
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a potkani Wistar $7 D017208
- 650 _2
- $a substrátová specifita $x fyziologie $7 D013379
- 650 _2
- $a zdraví ve městech $7 D014504
- 650 _2
- $a výfukové emise vozidel $x toxicita $7 D001335
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Cechova, Tereza $u -
- 700 1_
- $a Borek-Dohalska, Lucie $u -
- 700 1_
- $a Moserova, Michaela $u -
- 700 1_
- $a Frei, Eva $u -
- 700 1_
- $a Schmeiser, Heinz H $u -
- 700 1_
- $a Paca, Jan $u -
- 700 1_
- $a Arlt, Volker M. $u - $7 xx0074763 $4
- 773 0_
- $w MED00168352 $t Neuro endocrinology letters $x 0172-780X $g Roč. 33 Suppl 3(2012), s. 8-15
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23353838 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20130703 $b ABA008
- 991 __
- $a 20131002123256 $b ABA008
- 999 __
- $a ok $b bmc $g 987687 $s 822387
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 33 Suppl 3 $d 8-15 $i 0172-780X $m Neuro-endocrinology letters $n Neuro-endocrinol. lett. $x MED00168352
- LZP __
- $a Pubmed-20130703