-
Something wrong with this record ?
Hepcidin bound to α2-macroglobulin reduces ferroportin-1 expression and enhances its activity at reducing serum iron levels
ML. Huang, CJ. Austin, MA. Sari, YS. Rahmanto, P. Ponka, D. Vyoral, DR. Richardson,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NS10300
MZ0
CEP Register
Digital library NLK
Full text - Article
Source
NLK
Free Medical Journals
from 2008 to 1 year ago
Freely Accessible Science Journals
from 1905 to 1 year ago
PubMed Central
from 2005
Europe PubMed Central
from 2005 to 1 year ago
Open Access Digital Library
from 1905-10-01
Open Access Digital Library
from 1905-10-01
ROAD: Directory of Open Access Scholarly Resources
from 1905
- MeSH
- alpha-Macroglobulins genetics metabolism MeSH
- Models, Biological * MeSH
- Cell Line MeSH
- Hepcidins blood genetics MeSH
- Receptors, LDL genetics metabolism MeSH
- Humans MeSH
- Multiprotein Complexes blood genetics MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Tumor Suppressor Proteins genetics metabolism MeSH
- Low Density Lipoprotein Receptor-Related Protein-1 genetics metabolism MeSH
- Cation Transport Proteins biosynthesis genetics MeSH
- Gene Expression Regulation physiology MeSH
- Iron blood MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Hepcidin regulates iron metabolism by down-regulating ferroportin-1 (Fpn1). We demonstrated that hepcidin is complexed to the blood transport protein, α2-macroglobulin (α2M) (Peslova, G., Petrak, J., Kuzelova, K., Hrdy, I., Halada, P., Kuchel, P. W., Soe-Lin, S., Ponka, P., Sutak, R., Becker, E., Huang, M. L., Suryo Rahmanto, Y., Richardson, D. R., and Vyoral, D. (2009) Blood 113, 6225-6236). However, nothing is known about the mechanism of hepcidin binding to α2M or the effects of the α2M·hepcidin complex in vivo. We show that decreased Fpn1 expression can be mediated by hepcidin bound to native α2M and also, for the first time, hepcidin bound to methylamine-activated α2M (α2M-MA). Passage of high molecular weight α2M·hepcidin or α2M-MA·hepcidin complexes (≈725 kDa) through a Sephadex G-25 size exclusion column retained their ability to decrease Fpn1 expression. Further studies using ultrafiltration indicated that hepcidin binding to α2M and α2M-MA was labile, resulting in some release from the protein, and this may explain its urinary excretion. To determine whether α2M-MA·hepcidin is delivered to cells via the α2M receptor (Lrp1), we assessed α2M uptake and Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells. Interestingly, α2M·hepcidin or α2M-MA·hepcidin demonstrated similar activities at decreasing Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells, indicating that Lrp1 is not essential for Fpn1 regulation. In vivo, hepcidin bound to α2M or α2M-MA did not affect plasma clearance of α2M/α2M-MA. However, serum iron levels were reduced to a significantly greater extent in mice treated with α2M·hepcidin or α2M-MA·hepcidin relative to unbound hepcidin. This effect could be mediated by the ability of α2M or α2M-MA to retard kidney filtration of bound hepcidin, increasing its half-life. A model is proposed that suggests that unlike proteases, which are irreversibly bound to activated α2M, hepcidin remains labile and available to down-regulate Fpn1.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14079030
- 003
- CZ-PrNML
- 005
- 20141125111425.0
- 007
- ta
- 008
- 141112s2013 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1074/jbc.M113.471573 $2 doi
- 035 __
- $a (PubMed)23846698
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Huang, Michael Li-Hsuan $u Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia.
- 245 10
- $a Hepcidin bound to α2-macroglobulin reduces ferroportin-1 expression and enhances its activity at reducing serum iron levels / $c ML. Huang, CJ. Austin, MA. Sari, YS. Rahmanto, P. Ponka, D. Vyoral, DR. Richardson,
- 520 9_
- $a Hepcidin regulates iron metabolism by down-regulating ferroportin-1 (Fpn1). We demonstrated that hepcidin is complexed to the blood transport protein, α2-macroglobulin (α2M) (Peslova, G., Petrak, J., Kuzelova, K., Hrdy, I., Halada, P., Kuchel, P. W., Soe-Lin, S., Ponka, P., Sutak, R., Becker, E., Huang, M. L., Suryo Rahmanto, Y., Richardson, D. R., and Vyoral, D. (2009) Blood 113, 6225-6236). However, nothing is known about the mechanism of hepcidin binding to α2M or the effects of the α2M·hepcidin complex in vivo. We show that decreased Fpn1 expression can be mediated by hepcidin bound to native α2M and also, for the first time, hepcidin bound to methylamine-activated α2M (α2M-MA). Passage of high molecular weight α2M·hepcidin or α2M-MA·hepcidin complexes (≈725 kDa) through a Sephadex G-25 size exclusion column retained their ability to decrease Fpn1 expression. Further studies using ultrafiltration indicated that hepcidin binding to α2M and α2M-MA was labile, resulting in some release from the protein, and this may explain its urinary excretion. To determine whether α2M-MA·hepcidin is delivered to cells via the α2M receptor (Lrp1), we assessed α2M uptake and Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells. Interestingly, α2M·hepcidin or α2M-MA·hepcidin demonstrated similar activities at decreasing Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells, indicating that Lrp1 is not essential for Fpn1 regulation. In vivo, hepcidin bound to α2M or α2M-MA did not affect plasma clearance of α2M/α2M-MA. However, serum iron levels were reduced to a significantly greater extent in mice treated with α2M·hepcidin or α2M-MA·hepcidin relative to unbound hepcidin. This effect could be mediated by the ability of α2M or α2M-MA to retard kidney filtration of bound hepcidin, increasing its half-life. A model is proposed that suggests that unlike proteases, which are irreversibly bound to activated α2M, hepcidin remains labile and available to down-regulate Fpn1.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a proteiny přenášející kationty $x biosyntéza $x genetika $7 D027682
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a regulace genové exprese $x fyziologie $7 D005786
- 650 _2
- $a hepcidiny $x krev $x genetika $7 D064451
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a železo $x krev $7 D007501
- 650 _2
- $a protein 1 související s LDL-receptory $x genetika $x metabolismus $7 D026503
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši knockoutované $7 D018345
- 650 12
- $a biologické modely $7 D008954
- 650 _2
- $a multiproteinové komplexy $x krev $x genetika $7 D046912
- 650 _2
- $a LDL-receptory $x genetika $x metabolismus $7 D011973
- 650 _2
- $a nádorové supresorové proteiny $x genetika $x metabolismus $7 D025521
- 650 _2
- $a alfa-makroglobuliny $x genetika $x metabolismus $7 D000511
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Austin, Christopher J D $7 gn_A_00010190
- 700 1_
- $a Sari, Marie-Agnès
- 700 1_
- $a Rahmanto, Yohan Suryo
- 700 1_
- $a Ponka, Prem
- 700 1_
- $a Vyoral, Daniel
- 700 1_
- $a Richardson, Des R
- 773 0_
- $w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 288, č. 35 (2013), s. 25450-65
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/23846698 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20141112 $b ABA008
- 991 __
- $a 20141125111505 $b ABA008
- 999 __
- $a ok $b bmc $g 1047326 $s 878035
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2013 $b 288 $c 35 $d 25450-65 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
- GRA __
- $a NS10300 $p MZ0
- LZP __
- $a Pubmed-20141112