Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Hepcidin bound to α2-macroglobulin reduces ferroportin-1 expression and enhances its activity at reducing serum iron levels

ML. Huang, CJ. Austin, MA. Sari, YS. Rahmanto, P. Ponka, D. Vyoral, DR. Richardson,

. 2013 ; 288 (35) : 25450-65.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
NS10300 MZ0 CEP Register

Hepcidin regulates iron metabolism by down-regulating ferroportin-1 (Fpn1). We demonstrated that hepcidin is complexed to the blood transport protein, α2-macroglobulin (α2M) (Peslova, G., Petrak, J., Kuzelova, K., Hrdy, I., Halada, P., Kuchel, P. W., Soe-Lin, S., Ponka, P., Sutak, R., Becker, E., Huang, M. L., Suryo Rahmanto, Y., Richardson, D. R., and Vyoral, D. (2009) Blood 113, 6225-6236). However, nothing is known about the mechanism of hepcidin binding to α2M or the effects of the α2M·hepcidin complex in vivo. We show that decreased Fpn1 expression can be mediated by hepcidin bound to native α2M and also, for the first time, hepcidin bound to methylamine-activated α2M (α2M-MA). Passage of high molecular weight α2M·hepcidin or α2M-MA·hepcidin complexes (≈725 kDa) through a Sephadex G-25 size exclusion column retained their ability to decrease Fpn1 expression. Further studies using ultrafiltration indicated that hepcidin binding to α2M and α2M-MA was labile, resulting in some release from the protein, and this may explain its urinary excretion. To determine whether α2M-MA·hepcidin is delivered to cells via the α2M receptor (Lrp1), we assessed α2M uptake and Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells. Interestingly, α2M·hepcidin or α2M-MA·hepcidin demonstrated similar activities at decreasing Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells, indicating that Lrp1 is not essential for Fpn1 regulation. In vivo, hepcidin bound to α2M or α2M-MA did not affect plasma clearance of α2M/α2M-MA. However, serum iron levels were reduced to a significantly greater extent in mice treated with α2M·hepcidin or α2M-MA·hepcidin relative to unbound hepcidin. This effect could be mediated by the ability of α2M or α2M-MA to retard kidney filtration of bound hepcidin, increasing its half-life. A model is proposed that suggests that unlike proteases, which are irreversibly bound to activated α2M, hepcidin remains labile and available to down-regulate Fpn1.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14079030
003      
CZ-PrNML
005      
20141125111425.0
007      
ta
008      
141112s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1074/jbc.M113.471573 $2 doi
035    __
$a (PubMed)23846698
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Huang, Michael Li-Hsuan $u Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia.
245    10
$a Hepcidin bound to α2-macroglobulin reduces ferroportin-1 expression and enhances its activity at reducing serum iron levels / $c ML. Huang, CJ. Austin, MA. Sari, YS. Rahmanto, P. Ponka, D. Vyoral, DR. Richardson,
520    9_
$a Hepcidin regulates iron metabolism by down-regulating ferroportin-1 (Fpn1). We demonstrated that hepcidin is complexed to the blood transport protein, α2-macroglobulin (α2M) (Peslova, G., Petrak, J., Kuzelova, K., Hrdy, I., Halada, P., Kuchel, P. W., Soe-Lin, S., Ponka, P., Sutak, R., Becker, E., Huang, M. L., Suryo Rahmanto, Y., Richardson, D. R., and Vyoral, D. (2009) Blood 113, 6225-6236). However, nothing is known about the mechanism of hepcidin binding to α2M or the effects of the α2M·hepcidin complex in vivo. We show that decreased Fpn1 expression can be mediated by hepcidin bound to native α2M and also, for the first time, hepcidin bound to methylamine-activated α2M (α2M-MA). Passage of high molecular weight α2M·hepcidin or α2M-MA·hepcidin complexes (≈725 kDa) through a Sephadex G-25 size exclusion column retained their ability to decrease Fpn1 expression. Further studies using ultrafiltration indicated that hepcidin binding to α2M and α2M-MA was labile, resulting in some release from the protein, and this may explain its urinary excretion. To determine whether α2M-MA·hepcidin is delivered to cells via the α2M receptor (Lrp1), we assessed α2M uptake and Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells. Interestingly, α2M·hepcidin or α2M-MA·hepcidin demonstrated similar activities at decreasing Fpn1 expression in Lrp1(-/-) and Lrp1(+/+) cells, indicating that Lrp1 is not essential for Fpn1 regulation. In vivo, hepcidin bound to α2M or α2M-MA did not affect plasma clearance of α2M/α2M-MA. However, serum iron levels were reduced to a significantly greater extent in mice treated with α2M·hepcidin or α2M-MA·hepcidin relative to unbound hepcidin. This effect could be mediated by the ability of α2M or α2M-MA to retard kidney filtration of bound hepcidin, increasing its half-life. A model is proposed that suggests that unlike proteases, which are irreversibly bound to activated α2M, hepcidin remains labile and available to down-regulate Fpn1.
650    _2
$a zvířata $7 D000818
650    _2
$a proteiny přenášející kationty $x biosyntéza $x genetika $7 D027682
650    _2
$a buněčné linie $7 D002460
650    _2
$a regulace genové exprese $x fyziologie $7 D005786
650    _2
$a hepcidiny $x krev $x genetika $7 D064451
650    _2
$a lidé $7 D006801
650    _2
$a železo $x krev $7 D007501
650    _2
$a protein 1 související s LDL-receptory $x genetika $x metabolismus $7 D026503
650    _2
$a myši $7 D051379
650    _2
$a myši knockoutované $7 D018345
650    12
$a biologické modely $7 D008954
650    _2
$a multiproteinové komplexy $x krev $x genetika $7 D046912
650    _2
$a LDL-receptory $x genetika $x metabolismus $7 D011973
650    _2
$a nádorové supresorové proteiny $x genetika $x metabolismus $7 D025521
650    _2
$a alfa-makroglobuliny $x genetika $x metabolismus $7 D000511
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Austin, Christopher J D $7 gn_A_00010190
700    1_
$a Sari, Marie-Agnès
700    1_
$a Rahmanto, Yohan Suryo
700    1_
$a Ponka, Prem
700    1_
$a Vyoral, Daniel
700    1_
$a Richardson, Des R
773    0_
$w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 288, č. 35 (2013), s. 25450-65
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23846698 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20141112 $b ABA008
991    __
$a 20141125111505 $b ABA008
999    __
$a ok $b bmc $g 1047326 $s 878035
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 288 $c 35 $d 25450-65 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
GRA    __
$a NS10300 $p MZ0
LZP    __
$a Pubmed-20141112

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...