• Je něco špatně v tomto záznamu ?

Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples

H. Vaisocherová-Lísalová, I. Víšová, ML. Ermini, T. Špringer, XC. Song, J. Mrázek, J. Lamačová, N. Scott Lynn, P. Šedivák, J. Homola,

. 2016 ; 80 (-) : 84-90. [pub] 20160114

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17000581

Recent outbreaks of foodborne illnesses have shown that foodborne bacterial pathogens present a significant threat to public health, resulting in an increased need for technologies capable of fast and reliable screening of food commodities. The optimal method of pathogen detection in foods should: (i) be rapid, specific, and sensitive; (ii) require minimum sample preparation; and (iii) be robust and cost-effective, thus enabling use in the field. Here we report the use of a SPR biosensor based on ultra-low fouling and functionalizable poly(carboxybetaine acrylamide) (pCBAA) brushes for the rapid and sensitive detection of bacterial pathogens in crude food samples utilizing a three-step detection assay. We studied both the surface resistance to fouling and the functional capabilities of these brushes with respect to each step of the assay, namely: (I) incubation of the sensor with crude food samples, resulting in the capture of bacteria by antibodies immobilized to the pCBAA coating, (II) binding of secondary biotinylated antibody (Ab2) to previously captured bacteria, and (III) binding of streptavidin-coated gold nanoparticles to the biotinylated Ab2 in order to enhance the sensor response. We also investigated the effects of the brush thickness on the biorecognition capabilities of the gold-grafted functionalized pCBAA coatings. We demonstrate that pCBAA-compared to standard low-fouling OEG-based alkanethiolate self-assemabled monolayers-exhibits superior surface resistance regarding both fouling from complex food samples as well as the non-specific binding of S-AuNPs. We further demonstrate that a SPR biosensor based on a pCBAA brush with a thickness as low as 20 nm was capable of detecting E. coli O157:H7 and Salmonella sp. in complex hamburger and cucumber samples with extraordinary sensitivity and specificity. The limits of detection for the two bacteria in cucumber and hamburger extracts were determined to be 57 CFU/mL and 17 CFU/mL for E. coli and 7.4 × 10(3) CFU/mL and 11.7 × 10(3)CFU/mL for Salmonella sp., respectively. In addition, we demonstrate the simultaneous detection of E. coli and Salmonella sp. in hamburger sample using a multichannel SPR biosensor having appropriate functional coatings.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000581
003      
CZ-PrNML
005      
20170113094847.0
007      
ta
008      
170103s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bios.2016.01.040 $2 doi
024    7_
$a 10.1016/j.bios.2016.01.040 $2 doi
035    __
$a (PubMed)26807521
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Vaisocherová-Lísalová, Hana $u Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 57, Prague, Czech Republic.
245    10
$a Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples / $c H. Vaisocherová-Lísalová, I. Víšová, ML. Ermini, T. Špringer, XC. Song, J. Mrázek, J. Lamačová, N. Scott Lynn, P. Šedivák, J. Homola,
520    9_
$a Recent outbreaks of foodborne illnesses have shown that foodborne bacterial pathogens present a significant threat to public health, resulting in an increased need for technologies capable of fast and reliable screening of food commodities. The optimal method of pathogen detection in foods should: (i) be rapid, specific, and sensitive; (ii) require minimum sample preparation; and (iii) be robust and cost-effective, thus enabling use in the field. Here we report the use of a SPR biosensor based on ultra-low fouling and functionalizable poly(carboxybetaine acrylamide) (pCBAA) brushes for the rapid and sensitive detection of bacterial pathogens in crude food samples utilizing a three-step detection assay. We studied both the surface resistance to fouling and the functional capabilities of these brushes with respect to each step of the assay, namely: (I) incubation of the sensor with crude food samples, resulting in the capture of bacteria by antibodies immobilized to the pCBAA coating, (II) binding of secondary biotinylated antibody (Ab2) to previously captured bacteria, and (III) binding of streptavidin-coated gold nanoparticles to the biotinylated Ab2 in order to enhance the sensor response. We also investigated the effects of the brush thickness on the biorecognition capabilities of the gold-grafted functionalized pCBAA coatings. We demonstrate that pCBAA-compared to standard low-fouling OEG-based alkanethiolate self-assemabled monolayers-exhibits superior surface resistance regarding both fouling from complex food samples as well as the non-specific binding of S-AuNPs. We further demonstrate that a SPR biosensor based on a pCBAA brush with a thickness as low as 20 nm was capable of detecting E. coli O157:H7 and Salmonella sp. in complex hamburger and cucumber samples with extraordinary sensitivity and specificity. The limits of detection for the two bacteria in cucumber and hamburger extracts were determined to be 57 CFU/mL and 17 CFU/mL for E. coli and 7.4 × 10(3) CFU/mL and 11.7 × 10(3)CFU/mL for Salmonella sp., respectively. In addition, we demonstrate the simultaneous detection of E. coli and Salmonella sp. in hamburger sample using a multichannel SPR biosensor having appropriate functional coatings.
650    _2
$a imobilizační protilátky $x chemie $7 D055910
650    12
$a biosenzitivní techniky $7 D015374
650    _2
$a Escherichia coli O157 $x izolace a purifikace $x patogenita $7 D019453
650    _2
$a kontaminace potravin $7 D005506
650    12
$a potravinářská mikrobiologie $7 D005516
650    _2
$a nemoci přenášené potravou $x diagnóza $x mikrobiologie $7 D005517
650    _2
$a zlato $x chemie $7 D006046
650    _2
$a lidé $7 D006801
650    _2
$a limita detekce $7 D057230
650    _2
$a povrchová plasmonová rezonance $7 D020349
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Víšová, Ivana $u Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 57, Prague, Czech Republic.
700    1_
$a Ermini, Maria Laura $u Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 57, Prague, Czech Republic.
700    1_
$a Špringer, Tomáš $u Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 57, Prague, Czech Republic.
700    1_
$a Song, Xue Chadtová $u Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 57, Prague, Czech Republic.
700    1_
$a Mrázek, Jan $u Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 57, Prague, Czech Republic.
700    1_
$a Lamačová, Josefína $u Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 57, Prague, Czech Republic.
700    1_
$a Scott Lynn, N $u Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 57, Prague, Czech Republic.
700    1_
$a Šedivák, Petr $u Police of the Czech Republic, Kapucínská 214/2, Prague, Czech Republic.
700    1_
$a Homola, Jiří $u Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 57, Prague, Czech Republic. Electronic address: homola@ufe.cz.
773    0_
$w MED00006627 $t Biosensors & bioelectronics $x 1873-4235 $g Roč. 80, č. - (2016), s. 84-90
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26807521 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170113094948 $b ABA008
999    __
$a ok $b bmc $g 1179721 $s 961148
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 80 $c - $d 84-90 $e 20160114 $i 1873-4235 $m Biosensors & bioelectronics $n Biosens Bioelectron $x MED00006627
LZP    __
$a Pubmed-20170103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...