Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Active and Passive Optical Imaging Modality for Unobtrusive Cardiorespiratory Monitoring and Facial Expression Assessment

V. Blazek, N. Blanik, CR. Blazek, M. Paul, C. Pereira, M. Koeny, B. Venema, S. Leonhardt,

. 2017 ; 124 (1) : 104-119.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031500

Because of their obvious advantages, active and passive optoelectronic sensor concepts are being investigated by biomedical research groups worldwide, particularly their camera-based variants. Such methods work noninvasively and contactless, and they provide spatially resolved parameter detection. We present 2 techniques: the active photoplethysmography imaging (PPGI) method for detecting dermal blood perfusion dynamics and the passive infrared thermography imaging (IRTI) method for detecting skin temperature distribution. PPGI is an enhancement of classical pulse oximetry. Approved algorithms from pulse oximetry for the detection of heart rate, heart rate variability, blood pressure-dependent pulse wave velocity, pulse waveform-related stress/pain indicators, respiration rate, respiratory variability, and vasomotional activity can easily be adapted to PPGI. Although the IRTI method primarily records temperature distribution of the observed object, information on respiration rate and respiratory variability can also be derived by analyzing temperature change over time, for example, in the nasal region, or through respiratory movement. Combined with current research areas and novel biomedical engineering applications (eg, telemedicine, tele-emergency, and telemedical diagnostics), PPGI and IRTI may offer new data for diagnostic purposes, including assessment of peripheral arterial and venous oxygen saturation (as well as their differences). Moreover, facial expressions and stress and/or pain-related variables can be derived, for example, during anesthesia, in the recovery room/intensive care unit and during daily activities. The main advantages of both monitoring methods are unobtrusive data acquisition and the possibility to assess vital variables for different body regions. These methods supplement each other to enable long-term monitoring of physiological effects and of effects with special local characteristics. They also offer diagnostic advantages for intensive care patients and for high-risk patients in a homecare/outdoor setting. Selected applications have been validated at our laboratory using optical PPGI and IRTI techniques in a stand-alone or hybrid configuration. Additional research and validation is required before these preliminary results can be introduced for clinical applications.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031500
003      
CZ-PrNML
005      
20171026113704.0
007      
ta
008      
171025s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1213/ANE.0000000000001388 $2 doi
035    __
$a (PubMed)27537931
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Blazek, Vladimir $u From the *Philips Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; †The Czech Institute of Informatics, Robotics and Cybernetics, CTU Prague, Prague, Czech Republic; and ‡The Private Clinic of Dermatology, Haut im Zentrum, Zurich, Switzerland.
245    10
$a Active and Passive Optical Imaging Modality for Unobtrusive Cardiorespiratory Monitoring and Facial Expression Assessment / $c V. Blazek, N. Blanik, CR. Blazek, M. Paul, C. Pereira, M. Koeny, B. Venema, S. Leonhardt,
520    9_
$a Because of their obvious advantages, active and passive optoelectronic sensor concepts are being investigated by biomedical research groups worldwide, particularly their camera-based variants. Such methods work noninvasively and contactless, and they provide spatially resolved parameter detection. We present 2 techniques: the active photoplethysmography imaging (PPGI) method for detecting dermal blood perfusion dynamics and the passive infrared thermography imaging (IRTI) method for detecting skin temperature distribution. PPGI is an enhancement of classical pulse oximetry. Approved algorithms from pulse oximetry for the detection of heart rate, heart rate variability, blood pressure-dependent pulse wave velocity, pulse waveform-related stress/pain indicators, respiration rate, respiratory variability, and vasomotional activity can easily be adapted to PPGI. Although the IRTI method primarily records temperature distribution of the observed object, information on respiration rate and respiratory variability can also be derived by analyzing temperature change over time, for example, in the nasal region, or through respiratory movement. Combined with current research areas and novel biomedical engineering applications (eg, telemedicine, tele-emergency, and telemedical diagnostics), PPGI and IRTI may offer new data for diagnostic purposes, including assessment of peripheral arterial and venous oxygen saturation (as well as their differences). Moreover, facial expressions and stress and/or pain-related variables can be derived, for example, during anesthesia, in the recovery room/intensive care unit and during daily activities. The main advantages of both monitoring methods are unobtrusive data acquisition and the possibility to assess vital variables for different body regions. These methods supplement each other to enable long-term monitoring of physiological effects and of effects with special local characteristics. They also offer diagnostic advantages for intensive care patients and for high-risk patients in a homecare/outdoor setting. Selected applications have been validated at our laboratory using optical PPGI and IRTI techniques in a stand-alone or hybrid configuration. Additional research and validation is required before these preliminary results can be introduced for clinical applications.
650    _2
$a zvířata $7 D000818
650    _2
$a rychlost toku krve $7 D001783
650    _2
$a design vybavení $7 D004867
650    12
$a výraz obličeje $7 D005149
650    _2
$a zdravotní stav $7 D006304
650    12
$a hemodynamika $7 D006439
650    _2
$a lidé $7 D006801
650    _2
$a infračervené záření $7 D007259
650    _2
$a ambulantní monitorování $x přístrojové vybavení $x metody $7 D018670
650    12
$a optické zobrazování $x přístrojové vybavení $7 D061848
650    12
$a oxymetrie $x přístrojové vybavení $7 D010092
650    12
$a fotopletysmografie $x přístrojové vybavení $7 D017156
650    _2
$a prediktivní hodnota testů $7 D011237
650    _2
$a regionální krevní průtok $7 D012039
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    12
$a mechanika dýchání $7 D015656
650    _2
$a kůže $x krevní zásobení $7 D012867
650    12
$a teplota kůže $7 D012881
650    12
$a termografie $x přístrojové vybavení $7 D013817
650    _2
$a teploměry $7 D013821
650    _2
$a časové faktory $7 D013997
650    _2
$a měniče $7 D014159
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Blanik, Nikolai
700    1_
$a Blazek, Claudia R
700    1_
$a Paul, Michael
700    1_
$a Pereira, Carina
700    1_
$a Koeny, Marcus
700    1_
$a Venema, Boudewijn
700    1_
$a Leonhardt, Steffen
773    0_
$w MED00000348 $t Anesthesia and analgesia $x 1526-7598 $g Roč. 124, č. 1 (2017), s. 104-119
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27537931 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171026113747 $b ABA008
999    __
$a ok $b bmc $g 1255093 $s 992527
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 124 $c 1 $d 104-119 $i 1526-7598 $m Anesthesia and analgesia $n Anesth Analg $x MED00000348
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...