• Something wrong with this record ?

Mouse Model of Alagille Syndrome and Mechanisms of Jagged1 Missense Mutations

ER. Andersson, IV. Chivukula, S. Hankeova, M. Sjöqvist, YL. Tsoi, D. Ramsköld, J. Masek, A. Elmansuri, A. Hoogendoorn, E. Vazquez, H. Storvall, J. Netušilová, M. Huch, B. Fischler, E. Ellis, A. Contreras, A. Nemeth, KC. Chien, H. Clevers, R....

. 2018 ; 154 (4) : 1080-1095. [pub] 20171121

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND & AIMS: Alagille syndrome is a genetic disorder characterized by cholestasis, ocular abnormalities, characteristic facial features, heart defects, and vertebral malformations. Most cases are associated with mutations in JAGGED1 (JAG1), which encodes a Notch ligand, although it is not clear how these contribute to disease development. We aimed to develop a mouse model of Alagille syndrome to elucidate these mechanisms. METHODS: Mice with a missense mutation (H268Q) in Jag1 (Jag1+/Ndr mice) were outbred to a C3H/C57bl6 background to generate a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice). Liver tissues were collected at different timepoints during development, analyzed by histology, and liver organoids were cultured and analyzed. We performed transcriptome analysis of Jag1Ndr/Ndr livers and livers from patients with Alagille syndrome, cross-referenced to the Human Protein Atlas, to identify commonly dysregulated pathways and biliary markers. We used species-specific transcriptome separation and ligand-receptor interaction assays to measure Notch signaling and the ability of JAG1Ndr to bind or activate Notch receptors. We studied signaling of JAG1 and JAG1Ndr via NOTCH 1, NOTCH2, and NOTCH3 and resulting gene expression patterns in parental and NOTCH1-expressing C2C12 cell lines. RESULTS: Jag1Ndr/Ndr mice had many features of Alagille syndrome, including eye, heart, and liver defects. Bile duct differentiation, morphogenesis, and function were dysregulated in newborn Jag1Ndr/Ndr mice, with aberrations in cholangiocyte polarity, but these defects improved in adult mice. Jag1Ndr/Ndr liver organoids collapsed in culture, indicating structural instability. Whole-transcriptome sequence analyses of liver tissues from mice and patients with Alagille syndrome identified dysregulated genes encoding proteins enriched at the apical side of cholangiocytes, including CFTR and SLC5A1, as well as reduced expression of IGF1. Exposure of Notch-expressing cells to JAG1Ndr, compared with JAG1, led to hypomorphic Notch signaling, based on transcriptome analysis. JAG1-expressing cells, but not JAG1Ndr-expressing cells, bound soluble Notch1 extracellular domain, quantified by flow cytometry. However, JAG1 and JAG1Ndr cells each bound NOTCH2, and signaling from NOTCH2 signaling was reduced but not completely inhibited, in response to JAG1Ndr compared with JAG1. CONCLUSIONS: In mice, expression of a missense mutant of Jag1 (Jag1Ndr) disrupts bile duct development and recapitulates Alagille syndrome phenotypes in heart, eye, and craniofacial dysmorphology. JAG1Ndr does not bind NOTCH1, but binds NOTCH2, and elicits hypomorphic signaling. This mouse model can be used to study other features of Alagille syndrome and organ development.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18024473
003      
CZ-PrNML
005      
20180716095301.0
007      
ta
008      
180709s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1053/j.gastro.2017.11.002 $2 doi
035    __
$a (PubMed)29162437
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Andersson, Emma R $u Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden. Electronic address: emma.andersson@ki.se.
245    10
$a Mouse Model of Alagille Syndrome and Mechanisms of Jagged1 Missense Mutations / $c ER. Andersson, IV. Chivukula, S. Hankeova, M. Sjöqvist, YL. Tsoi, D. Ramsköld, J. Masek, A. Elmansuri, A. Hoogendoorn, E. Vazquez, H. Storvall, J. Netušilová, M. Huch, B. Fischler, E. Ellis, A. Contreras, A. Nemeth, KC. Chien, H. Clevers, R. Sandberg, V. Bryja, U. Lendahl,
520    9_
$a BACKGROUND & AIMS: Alagille syndrome is a genetic disorder characterized by cholestasis, ocular abnormalities, characteristic facial features, heart defects, and vertebral malformations. Most cases are associated with mutations in JAGGED1 (JAG1), which encodes a Notch ligand, although it is not clear how these contribute to disease development. We aimed to develop a mouse model of Alagille syndrome to elucidate these mechanisms. METHODS: Mice with a missense mutation (H268Q) in Jag1 (Jag1+/Ndr mice) were outbred to a C3H/C57bl6 background to generate a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice). Liver tissues were collected at different timepoints during development, analyzed by histology, and liver organoids were cultured and analyzed. We performed transcriptome analysis of Jag1Ndr/Ndr livers and livers from patients with Alagille syndrome, cross-referenced to the Human Protein Atlas, to identify commonly dysregulated pathways and biliary markers. We used species-specific transcriptome separation and ligand-receptor interaction assays to measure Notch signaling and the ability of JAG1Ndr to bind or activate Notch receptors. We studied signaling of JAG1 and JAG1Ndr via NOTCH 1, NOTCH2, and NOTCH3 and resulting gene expression patterns in parental and NOTCH1-expressing C2C12 cell lines. RESULTS: Jag1Ndr/Ndr mice had many features of Alagille syndrome, including eye, heart, and liver defects. Bile duct differentiation, morphogenesis, and function were dysregulated in newborn Jag1Ndr/Ndr mice, with aberrations in cholangiocyte polarity, but these defects improved in adult mice. Jag1Ndr/Ndr liver organoids collapsed in culture, indicating structural instability. Whole-transcriptome sequence analyses of liver tissues from mice and patients with Alagille syndrome identified dysregulated genes encoding proteins enriched at the apical side of cholangiocytes, including CFTR and SLC5A1, as well as reduced expression of IGF1. Exposure of Notch-expressing cells to JAG1Ndr, compared with JAG1, led to hypomorphic Notch signaling, based on transcriptome analysis. JAG1-expressing cells, but not JAG1Ndr-expressing cells, bound soluble Notch1 extracellular domain, quantified by flow cytometry. However, JAG1 and JAG1Ndr cells each bound NOTCH2, and signaling from NOTCH2 signaling was reduced but not completely inhibited, in response to JAG1Ndr compared with JAG1. CONCLUSIONS: In mice, expression of a missense mutant of Jag1 (Jag1Ndr) disrupts bile duct development and recapitulates Alagille syndrome phenotypes in heart, eye, and craniofacial dysmorphology. JAG1Ndr does not bind NOTCH1, but binds NOTCH2, and elicits hypomorphic signaling. This mouse model can be used to study other features of Alagille syndrome and organ development.
650    _2
$a Alagillův syndrom $x genetika $x metabolismus $x patologie $7 D016738
650    _2
$a zvířata $7 D000818
650    _2
$a žlučové cesty intrahepatální $x metabolismus $x patologie $7 D001653
650    _2
$a buněčná diferenciace $7 D002454
650    _2
$a kokultivační techniky $7 D018920
650    _2
$a modely nemocí na zvířatech $7 D004195
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a stanovení celkové genové exprese $x metody $7 D020869
650    _2
$a vývojová regulace genové exprese $7 D018507
650    _2
$a genetická predispozice k nemoci $7 D020022
650    _2
$a HEK293 buňky $7 D057809
650    _2
$a lidé $7 D006801
650    _2
$a protein jagged-1 $x genetika $x metabolismus $7 D000072100
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši inbrední C3H $7 D008809
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a myši transgenní $7 D008822
650    _2
$a morfogeneze $7 D009024
650    12
$a missense mutace $7 D020125
650    _2
$a organoidy $7 D009940
650    _2
$a fenotyp $7 D010641
650    _2
$a receptor Notch2 $x genetika $x metabolismus $7 D051883
650    _2
$a signální transdukce $7 D015398
650    _2
$a transfekce $7 D014162
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Chivukula, Indira V $u Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Current affiliation: Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge, Sweden.
700    1_
$a Hankeova, Simona $u Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
700    1_
$a Sjöqvist, Marika $u Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Tsoi, Yat Long $u Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Ramsköld, Daniel $u Rheumatology Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
700    1_
$a Masek, Jan $u Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Elmansuri, Aiman $u Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Hoogendoorn, Anita $u Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Vazquez, Elenae $u Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México.
700    1_
$a Storvall, Helena $u Karolinska University Hospital, CLINTEC, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Netušilová, Julie $u Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
700    1_
$a Huch, Meritxell $u Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre Utrecht, Netherlands; Present address: The Wellcome Trust/CRUK Gurdon Institute, Tennis Court Road, CB2, 1QN, Cambridge, UK.
700    1_
$a Fischler, Björn $u Karolinska University Hospital, Department of Pediatrics, CLINTEC, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Ellis, Ewa $u Karolinska University Hospital, CLINTEC, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Contreras, Adriana $u Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México.
700    1_
$a Nemeth, Antal $u Karolinska University Hospital, Department of Pediatrics, CLINTEC, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Chien, Kenneth C $u Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Clevers, Hans $u Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre Utrecht, Netherlands.
700    1_
$a Sandberg, Rickard $u Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Bryja, Vitezslav $u Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
700    1_
$a Lendahl, Urban $u Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden. Electronic address: urban.lendahl@ki.se.
773    0_
$w MED00001877 $t Gastroenterology $x 1528-0012 $g Roč. 154, č. 4 (2018), s. 1080-1095
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29162437 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20180716095559 $b ABA008
999    __
$a ok $b bmc $g 1316604 $s 1021394
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 154 $c 4 $d 1080-1095 $e 20171121 $i 1528-0012 $m Gastroenterology $n Gastroenterology $x MED00001877
LZP    __
$a Pubmed-20180709

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...