Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Retrograde nuclear transport from the cytoplasm is required for tRNATyr maturation in T. brucei

AC. Kessler, SS. Kulkarni, MJ. Paulines, MAT. Rubio, PA. Limbach, Z. Paris, JD. Alfonzo,

. 2018 ; 15 (4-5) : 528-536. [pub] 20171103

Language English Country United States

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Retrograde transport of tRNAs from the cytoplasm to the nucleus was first described in Saccharomyces cerevisiae and most recently in mammalian systems. Although the function of retrograde transport is not completely clear, it plays a role in the cellular response to changes in nutrient availability. Under low nutrient conditions tRNAs are sent from the cytoplasm to nucleus and presumably remain in storage there until nutrient levels improve. However, in S. cerevisiae tRNA retrograde transport is constitutive and occurs even when nutrient levels are adequate. Constitutive transport is important, at least, for the proper maturation of tRNAPhe, which undergoes cytoplasmic splicing, but requires the action of a nuclear modification enzyme that only acts on a spliced tRNA. A lingering question in retrograde tRNA transport is whether it is relegated to S. cerevisiae and multicellular eukaryotes or alternatively, is a pathway with deeper evolutionary roots. In the early branching eukaryote Trypanosoma brucei, tRNA splicing, like in yeast, occurs in the cytoplasm. In the present report, we have used a combination of cell fractionation and molecular approaches that show the presence of significant amounts of spliced tRNATyr in the nucleus of T. brucei. Notably, the modification enzyme tRNA-guanine transglycosylase (TGT) localizes to the nucleus and, as shown here, is not able to add queuosine (Q) to an intron-containing tRNA. We suggest that retrograde transport is partly the result of the differential intracellular localization of the splicing machinery (cytoplasmic) and a modification enzyme, TGT (nuclear). These findings expand the evolutionary distribution of retrograde transport mechanisms to include early diverging eukaryotes, while highlighting its importance for queuosine biosynthesis.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19001189
003      
CZ-PrNML
005      
20190115120646.0
007      
ta
008      
190107s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1080/15476286.2017.1377878 $2 doi
035    __
$a (PubMed)28901827
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kessler, Alan C $u a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA. c The Center for RNA Biology, The Ohio State University , Columbus , Ohio , USA.
245    10
$a Retrograde nuclear transport from the cytoplasm is required for tRNATyr maturation in T. brucei / $c AC. Kessler, SS. Kulkarni, MJ. Paulines, MAT. Rubio, PA. Limbach, Z. Paris, JD. Alfonzo,
520    9_
$a Retrograde transport of tRNAs from the cytoplasm to the nucleus was first described in Saccharomyces cerevisiae and most recently in mammalian systems. Although the function of retrograde transport is not completely clear, it plays a role in the cellular response to changes in nutrient availability. Under low nutrient conditions tRNAs are sent from the cytoplasm to nucleus and presumably remain in storage there until nutrient levels improve. However, in S. cerevisiae tRNA retrograde transport is constitutive and occurs even when nutrient levels are adequate. Constitutive transport is important, at least, for the proper maturation of tRNAPhe, which undergoes cytoplasmic splicing, but requires the action of a nuclear modification enzyme that only acts on a spliced tRNA. A lingering question in retrograde tRNA transport is whether it is relegated to S. cerevisiae and multicellular eukaryotes or alternatively, is a pathway with deeper evolutionary roots. In the early branching eukaryote Trypanosoma brucei, tRNA splicing, like in yeast, occurs in the cytoplasm. In the present report, we have used a combination of cell fractionation and molecular approaches that show the presence of significant amounts of spliced tRNATyr in the nucleus of T. brucei. Notably, the modification enzyme tRNA-guanine transglycosylase (TGT) localizes to the nucleus and, as shown here, is not able to add queuosine (Q) to an intron-containing tRNA. We suggest that retrograde transport is partly the result of the differential intracellular localization of the splicing machinery (cytoplasmic) and a modification enzyme, TGT (nuclear). These findings expand the evolutionary distribution of retrograde transport mechanisms to include early diverging eukaryotes, while highlighting its importance for queuosine biosynthesis.
650    _2
$a aktivní transport - buněčné jádro $7 D021581
650    _2
$a buněčné jádro $x genetika $x metabolismus $7 D002467
650    _2
$a cytoplazma $x genetika $x metabolismus $7 D003593
650    _2
$a kinetika $7 D007700
650    _2
$a konformace nukleové kyseliny $7 D009690
650    _2
$a nukleosid Q $x metabolismus $7 D009704
650    _2
$a pentosyltransferasy $x genetika $x metabolismus $7 D010430
650    _2
$a sestřih RNA $7 D012326
650    _2
$a transport RNA $7 D034443
650    _2
$a RNA transferová Phe $x genetika $x metabolismus $7 D012360
650    _2
$a RNA transferová Tyr $x genetika $x metabolismus $7 D012365
650    _2
$a Saccharomyces cerevisiae $x genetika $x metabolismus $7 D012441
650    _2
$a Trypanosoma brucei brucei $x genetika $x metabolismus $7 D014346
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Kulkarni, Sneha S $u d Institute of Parasitology, Biology Centre, South Bohemia, Czech Academy of Sciences and Faculty of Science, University of South Bohemia , České Budějovice , South Bohemia , Czech Republic.
700    1_
$a Paulines, Mellie J $u e Department of Chemistry , Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati , Cincinnati , Ohio , USA.
700    1_
$a Rubio, Mary Anne T $u a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA. c The Center for RNA Biology, The Ohio State University , Columbus , Ohio , USA.
700    1_
$a Limbach, Patrick A $u e Department of Chemistry , Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati , Cincinnati , Ohio , USA.
700    1_
$a Paris, Zdeněk $u d Institute of Parasitology, Biology Centre, South Bohemia, Czech Academy of Sciences and Faculty of Science, University of South Bohemia , České Budějovice , South Bohemia , Czech Republic.
700    1_
$a Alfonzo, Juan D $u a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA. b The Ohio State Biochemistry Program , The Ohio State University , Columbus , Ohio , USA. c The Center for RNA Biology, The Ohio State University , Columbus , Ohio , USA.
773    0_
$w MED00181077 $t RNA biology $x 1555-8584 $g Roč. 15, č. 4-5 (2018), s. 528-536
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28901827 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190115120856 $b ABA008
999    __
$a ok $b bmc $g 1364024 $s 1039312
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 15 $c 4-5 $d 528-536 $e 20171103 $i 1555-8584 $m RNA biology $n RNA Biol $x MED00181077
LZP    __
$a Pubmed-20190107

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...