-
Je něco špatně v tomto záznamu ?
An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch
M. Krepl, J. Vögele, H. Kruse, E. Duchardt-Ferner, J. Wöhnert, J. Sponer,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
29893898
DOI
10.1093/nar/gky490
Knihovny.cz E-zdroje
- MeSH
- cytosin chemie MeSH
- draslík MeSH
- hořčík MeSH
- ionty chemie MeSH
- kationty chemie MeSH
- konformace nukleové kyseliny MeSH
- ligandy MeSH
- mutace MeSH
- neomycin MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- párování bází MeSH
- riboswitch * MeSH
- simulace molekulární dynamiky MeSH
- uracil chemie MeSH
- vazebná místa MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The neomycin sensing riboswitch is the smallest biologically functional RNA riboswitch, forming a hairpin capped with a U-turn loop-a well-known RNA motif containing a conserved uracil. It was shown previously that a U→C substitution of the eponymous conserved uracil does not alter the riboswitch structure due to C protonation at N3. Furthermore, cytosine is evolutionary permitted to replace uracil in other U-turns. Here, we use molecular dynamics simulations to study the molecular basis of this substitution in the neomycin sensing riboswitch and show that a structure-stabilizing monovalent cation-binding site in the wild-type RNA is the main reason for its negligible structural effect. We then use NMR spectroscopy to confirm the existence of this cation-binding site and to demonstrate its effects on RNA stability. Lastly, using quantum chemical calculations, we show that the cation-binding site is altering the electronic environment of the wild-type U-turn so that it is more similar to the cytosine mutant. The study reveals an amazingly complex and delicate interplay between various energy contributions shaping up the 3D structure and evolution of nucleic acids.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19035191
- 003
- CZ-PrNML
- 005
- 20191008112959.0
- 007
- ta
- 008
- 191007s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gky490 $2 doi
- 035 __
- $a (PubMed)29893898
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Krepl, Miroslav $u Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic.
- 245 13
- $a An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch / $c M. Krepl, J. Vögele, H. Kruse, E. Duchardt-Ferner, J. Wöhnert, J. Sponer,
- 520 9_
- $a The neomycin sensing riboswitch is the smallest biologically functional RNA riboswitch, forming a hairpin capped with a U-turn loop-a well-known RNA motif containing a conserved uracil. It was shown previously that a U→C substitution of the eponymous conserved uracil does not alter the riboswitch structure due to C protonation at N3. Furthermore, cytosine is evolutionary permitted to replace uracil in other U-turns. Here, we use molecular dynamics simulations to study the molecular basis of this substitution in the neomycin sensing riboswitch and show that a structure-stabilizing monovalent cation-binding site in the wild-type RNA is the main reason for its negligible structural effect. We then use NMR spectroscopy to confirm the existence of this cation-binding site and to demonstrate its effects on RNA stability. Lastly, using quantum chemical calculations, we show that the cation-binding site is altering the electronic environment of the wild-type U-turn so that it is more similar to the cytosine mutant. The study reveals an amazingly complex and delicate interplay between various energy contributions shaping up the 3D structure and evolution of nucleic acids.
- 650 _2
- $a párování bází $7 D020029
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a kationty $x chemie $7 D002412
- 650 _2
- $a cytosin $x chemie $7 D003596
- 650 _2
- $a vodíková vazba $7 D006860
- 650 _2
- $a ionty $x chemie $7 D007477
- 650 _2
- $a ligandy $7 D008024
- 650 _2
- $a hořčík $7 D008274
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a neomycin $7 D009355
- 650 _2
- $a nukleární magnetická rezonance biomolekulární $7 D019906
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a draslík $7 D011188
- 650 12
- $a riboswitch $7 D058928
- 650 _2
- $a uracil $x chemie $7 D014498
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Vögele, Jennifer $u Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
- 700 1_
- $a Kruse, Holger $u Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic.
- 700 1_
- $a Duchardt-Ferner, Elke $u Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
- 700 1_
- $a Wöhnert, Jens $u Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
- 700 1_
- $a Sponer, Jiri $u Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic. Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 46, č. 13 (2018), s. 6528-6543
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29893898 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191008113415 $b ABA008
- 999 __
- $a ok $b bmc $g 1451851 $s 1073741
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 46 $c 13 $d 6528-6543 $e 20180727 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20191007