Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

OCaMIR-A Noninvasive, Diagnostic Signature for Early-Stage Ovarian Cancer: A Multi-cohort Retrospective and Prospective Study

R. Kandimalla, W. Wang, F. Yu, N. Zhou, F. Gao, M. Spillman, L. Moukova, O. Slaby, B. Salhia, S. Zhou, X. Wang, A. Goel

. 2021 ; 27 (15) : 4277-4286. [pub] 20210525

Language English Country United States

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Validation Study

PURPOSE: Due to the lack of effective screening approaches and early detection biomarkers, ovarian cancer has the highest mortality rates among gynecologic cancers. Herein, we undertook a systematic biomarker discovery and validation approach to identify microRNA (miRNA) biomarkers for the early detection of ovarian cancer. EXPERIMENTAL DESIGN: During the discovery phase, we performed small RNA sequencing in stage I high-grade serous ovarian cancer (n = 31), which was subsequently validated in multiple, independent data sets (TCGA, n = 543; GSE65819, n = 87). Subsequently, we performed multivariate logistic regression-based training in a serum data set (GSE106817, n = 640), followed by its independent validation in three retrospective data sets (GSE31568, n = 85; GSE113486, n = 140; Czech Republic cohort, n = 192) and one prospective serum cohort (n = 95). In addition, we evaluated the specificity of OCaMIR, by comparing its performance in several other cancers (GSE31568 cohort, n = 369). RESULTS: The OCaMIR demonstrated a robust diagnostic accuracy in the stage I high-grade serous ovarian cancer patients in the discovery cohort (AUC = 0.99), which was consistently reproducible in both stage I (AUC = 0.96) and all stage patients (AUC = 0.89) in the TCGA cohort. Logistic regression-based training and validation of OCaMIR achieved AUC values of 0.89 (GSE106817), 0.85 (GSE31568), 0.86 (GSE113486), and 0.82 (Czech Republic cohort) in the retrospective serum validation cohorts, as well as prospective validation cohort (AUC = 0.92). More importantly, OCaMIR demonstrated a significantly superior diagnostic performance compared with CA125 levels, even in stage I patients, and was more cost-effective, highlighting its potential role for screening and early detection of ovarian cancer. CONCLUSIONS: Small RNA sequencing identified a robust noninvasive miRNA signature for early-stage serous ovarian cancer detection.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22019686
003      
CZ-PrNML
005      
20220804135912.0
007      
ta
008      
220720s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1158/1078-0432.CCR-21-0267 $2 doi
035    __
$a (PubMed)34035068
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kandimalla, Raju $u Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas $1 https://orcid.org/0000000203425229
245    10
$a OCaMIR-A Noninvasive, Diagnostic Signature for Early-Stage Ovarian Cancer: A Multi-cohort Retrospective and Prospective Study / $c R. Kandimalla, W. Wang, F. Yu, N. Zhou, F. Gao, M. Spillman, L. Moukova, O. Slaby, B. Salhia, S. Zhou, X. Wang, A. Goel
520    9_
$a PURPOSE: Due to the lack of effective screening approaches and early detection biomarkers, ovarian cancer has the highest mortality rates among gynecologic cancers. Herein, we undertook a systematic biomarker discovery and validation approach to identify microRNA (miRNA) biomarkers for the early detection of ovarian cancer. EXPERIMENTAL DESIGN: During the discovery phase, we performed small RNA sequencing in stage I high-grade serous ovarian cancer (n = 31), which was subsequently validated in multiple, independent data sets (TCGA, n = 543; GSE65819, n = 87). Subsequently, we performed multivariate logistic regression-based training in a serum data set (GSE106817, n = 640), followed by its independent validation in three retrospective data sets (GSE31568, n = 85; GSE113486, n = 140; Czech Republic cohort, n = 192) and one prospective serum cohort (n = 95). In addition, we evaluated the specificity of OCaMIR, by comparing its performance in several other cancers (GSE31568 cohort, n = 369). RESULTS: The OCaMIR demonstrated a robust diagnostic accuracy in the stage I high-grade serous ovarian cancer patients in the discovery cohort (AUC = 0.99), which was consistently reproducible in both stage I (AUC = 0.96) and all stage patients (AUC = 0.89) in the TCGA cohort. Logistic regression-based training and validation of OCaMIR achieved AUC values of 0.89 (GSE106817), 0.85 (GSE31568), 0.86 (GSE113486), and 0.82 (Czech Republic cohort) in the retrospective serum validation cohorts, as well as prospective validation cohort (AUC = 0.92). More importantly, OCaMIR demonstrated a significantly superior diagnostic performance compared with CA125 levels, even in stage I patients, and was more cost-effective, highlighting its potential role for screening and early detection of ovarian cancer. CONCLUSIONS: Small RNA sequencing identified a robust noninvasive miRNA signature for early-stage serous ovarian cancer detection.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a nádorové biomarkery $x analýza $7 D014408
650    _2
$a kohortové studie $7 D015331
650    _2
$a serózní cystadenokarcinom $x chemie $x diagnóza $x patologie $7 D018284
650    _2
$a časná detekce nádoru $x metody $7 D055088
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mikro RNA $x analýza $7 D035683
650    _2
$a lidé středního věku $7 D008875
650    _2
$a stupeň nádoru $7 D060787
650    _2
$a staging nádorů $7 D009367
650    _2
$a nádory vaječníků $x chemie $x diagnóza $x patologie $7 D010051
650    _2
$a prospektivní studie $7 D011446
650    _2
$a retrospektivní studie $7 D012189
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a validační studie $7 D023361
700    1_
$a Wang, Wei $u Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, P.R. China $u Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, P.R. China
700    1_
$a Yu, Fan $u Department of Laboratory Medicine, West China Second Hospital, Sichuan University, Chengdu, P.R. China
700    1_
$a Zhou, Nianxin $u Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE & State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P.R. China
700    1_
$a Gao, Feng $u The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China $1 https://orcid.org/0000000205005527
700    1_
$a Spillman, Monique $u Department of Obstetrics and Gynecology, Baylor University Medical Center, Dallas, Texas
700    1_
$a Moukova, Lucie $u Masaryk Memorial Cancer Institute, Brno, Czech Republic
700    1_
$a Slaby, Ondrej $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic $u Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Salhia, Bodour $u Department of Translational Genomics, University of Southern California, Los Angeles, California
700    1_
$a Zhou, Shengtao $u Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE & State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P.R. China. ajgoel@coh.org Xin.Wang@cityu.edu.hk taotaovip2005@163.com
700    1_
$a Wang, Xin $u Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, P.R. China. ajgoel@coh.org Xin.Wang@cityu.edu.hk taotaovip2005@163.com $u Shenzhen Research Institute, City University of Hong Kong, Shenzhen, P.R. China
700    1_
$a Goel, Ajay $u Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas. ajgoel@coh.org Xin.Wang@cityu.edu.hk taotaovip2005@163.com $u Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California
773    0_
$w MED00001121 $t Clinical cancer research : an official journal of the American Association for Cancer Research $x 1557-3265 $g Roč. 27, č. 15 (2021), s. 4277-4286
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34035068 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804135905 $b ABA008
999    __
$a ok $b bmc $g 1823053 $s 1170929
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 27 $c 15 $d 4277-4286 $e 20210525 $i 1557-3265 $m Clinical cancer research $n Clin Cancer Res $x MED00001121
LZP    __
$a Pubmed-20220720

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...