Characterization of polychlorinated biphenyl-degrading bacteria isolated from contaminated sites in Czechia
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
12094733
DOI
10.1007/bf02817646
Knihovny.cz E-zdroje
- MeSH
- biodegradace MeSH
- Burkholderia cepacia izolace a purifikace metabolismus MeSH
- Cupriavidus necator izolace a purifikace metabolismus MeSH
- DNA bakterií chemie izolace a purifikace MeSH
- látky znečišťující půdu metabolismus toxicita MeSH
- polychlorované bifenyly metabolismus MeSH
- Pseudomonas genetika izolace a purifikace metabolismus MeSH
- půdní mikrobiologie * MeSH
- Southernův blotting MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- DNA bakterií MeSH
- látky znečišťující půdu MeSH
- polychlorované bifenyly MeSH
Biphenyl-utilizing polychlorinated biphenyls (PCB)-degrading bacteria were isolated from sites highly contaminated by PCBs, and their degradation abilities were determined using GC for typical commercial PCB mixtures (Delor 103 and Delor 106). Out of twelve strains which utilized biphenyl as a sole source of carbon and energy, strains Pseudomonas alcaligenes KP2 and P. fluorescens KP12, characterized by the BIOLOG identification system and the NEFERM test, were shown to significantly co-metabolize the PCB mixture Delor 103. DNA-DNA hybridization was used to compare both strains with well-known PCB-degraders Burkholderia cepacia strain LB400 and Ralstonia eutropha strain H850. The strain KP12 employs the same meta-fission route for degradation of chlorobenzoates as a chlorobiphenyl degrader Pseudomonas cepacia P166. Both isolates KP2 and KP12 belong to different phylogenetic groups, which indicates that the same geographical location does not ensure the same ancestor of degradative enzymes. We confirmed that also highly chlorinated and the most toxic congeners, which are contained in commercial PCB mixtures, can be biotransformed by members of indigenous bacterial-soil community under aerobic conditions.
Zobrazit více v PubMed
Crit Rev Toxicol. 1990;21(1):51-88 PubMed
Appl Environ Microbiol. 1985 May;49(5):1295-303 PubMed
Appl Environ Microbiol. 1992 Feb;58(2):647-54 PubMed
Appl Environ Microbiol. 1988 Aug;54(8):1940-5 PubMed
Appl Environ Microbiol. 1997 Aug;63(8):3096-103 PubMed
Appl Environ Microbiol. 1993 Sep;59(9):2790-4 PubMed
Annu Rev Microbiol. 1988;42:263-87 PubMed
Biochem J. 1978 Jul 15;174(1):85-94 PubMed
Appl Environ Microbiol. 1978 Feb;35(2):223-7 PubMed
Environ Health Perspect. 1989 May;81:225-39 PubMed
Folia Microbiol (Praha). 1999;44(3):317-21 PubMed
FEMS Microbiol Lett. 1991 Mar 1;62(2-3):163-9 PubMed
Appl Environ Microbiol. 2000 Aug;66(8):3255-61 PubMed
Microb Ecol. 1990 Dec;20(1):87-102 PubMed
Mol Gen Genet. 1997 Jan 27;253(4):499-506 PubMed
J Biol Chem. 1994 Mar 11;269(10):7807-15 PubMed
J Bacteriol. 1992 May;174(9):2903-12 PubMed
Appl Environ Microbiol. 1986 Apr;51(4):761-8 PubMed
Appl Environ Microbiol. 1987 May;53(5):1103-12 PubMed
Biodegradation. 1994 Dec;5(3-4):301-21 PubMed
Appl Environ Microbiol. 1994 Oct;60(10):3833-9 PubMed
Folia Microbiol (Praha). 1998;43(4):417-20 PubMed
Appl Environ Microbiol. 1995 Feb;61(2):443-7 PubMed
Appl Environ Microbiol. 1999 Aug;65(8):3614-21 PubMed
Appl Environ Microbiol. 1990 Dec;56(12):3842-50 PubMed
Biodegradation. 1994 Dec;5(3-4):359-77 PubMed
Gene. 1990 Jan 31;86(1):53-61 PubMed
Basic Life Sci. 1988;45:253-69 PubMed
FEMS Microbiol Lett. 1992 Nov 1;77(1-3):175-80 PubMed