Trehalose, glycogen and ethanol metabolism in the gcr1 mutant of Saccharomyces cerevisiae
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
12800502
DOI
10.1007/bf02930955
Knihovny.cz E-resources
- MeSH
- DNA-Binding Proteins genetics metabolism MeSH
- Ethanol metabolism MeSH
- Fungal Proteins genetics metabolism MeSH
- Glycogen metabolism MeSH
- Culture Media MeSH
- Mutation * MeSH
- Gene Expression Regulation, Fungal MeSH
- Saccharomyces cerevisiae Proteins MeSH
- Saccharomyces cerevisiae genetics growth & development metabolism MeSH
- Transcription Factors MeSH
- Trehalose metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA-Binding Proteins MeSH
- Ethanol MeSH
- Fungal Proteins MeSH
- GCR1 protein, S cerevisiae MeSH Browser
- Glycogen MeSH
- Culture Media MeSH
- Saccharomyces cerevisiae Proteins MeSH
- Transcription Factors MeSH
- Trehalose MeSH
Since Gcr1p is pivotal in controlling the transcription of glycolytic enzymes and trehalose metabolism seems to be one of the control points of glycolysis, we examined trehalose and glycogen synthesis in response to 2% glucose pulse during batch growth in gcr1 (glucose regulation-1) mutant lacking fully functional glycolytic pathway and in the wild-type strain. An increase in both trehalose and glycogen stores was observed 1 and 2 h after the pulse followed by a steady decrease in both the wild-type and the gcr1 mutant. The accumulation was faster while the following degradation was slower in gcr1 cells compared to wild-type ones. Although there was no distinct glucose consumption in the mutant cells it seemed that the glucose repression mechanism is similar in gcr1 mutant and in wild-type strain at least with respect to trehalose and glycogen metabolism.
See more in PubMed
Folia Microbiol (Praha). 2002;47(6):663-6 PubMed
Appl Environ Microbiol. 1995 Jan;61(1):109-15 PubMed
J Bacteriol. 1997 May;179(9):2987-93 PubMed
Microbiology. 1996 Jul;142 ( Pt 7):1775-82 PubMed
Eur J Biochem. 1993 Sep 15;216(3):841-8 PubMed
Antonie Van Leeuwenhoek. 1990 Oct;58(3):209-17 PubMed
J Bacteriol. 1999 Aug;181(15):4719-23 PubMed
J Biol Chem. 1983 Jan 25;258(2):1165-71 PubMed
Arch Microbiol. 1993;160(4):324-8 PubMed
J Bacteriol. 1980 Sep;143(3):1384-94 PubMed
Mol Cell Biol. 1990 Feb;10(2):859-62 PubMed
FEBS Lett. 1987 Aug 10;220(1):113-5 PubMed
Genetics. 1997 Oct;147(2):521-32 PubMed
Trends Biochem Sci. 1995 Jan;20(1):3-10 PubMed
Microbiology. 1997 Nov;143 ( Pt 11):3451-9 PubMed
Yeast. 1994 Dec;10(13):1753-90 PubMed
Eur J Biochem. 1988 Jun 15;174(3):551-9 PubMed
Nucleic Acids Res. 1990 Dec 11;18(23):7099-107 PubMed
J Bacteriol. 2000 Sep;182(17):4970-8 PubMed
Biochem J. 1999 Oct 15;343 Pt 2:319-25 PubMed
Anal Biochem. 1997 May 15;248(1):186-8 PubMed
Mol Cell Biol. 1992 Sep;12(9):3834-42 PubMed
Curr Genet. 1993;23(4):281-9 PubMed
Trends Genet. 1999 Jan;15(1):29-33 PubMed
Mol Cell Biol. 1990 Dec;10(12):6389-96 PubMed
FEMS Microbiol Rev. 2001 Jan;25(1):125-45 PubMed
J Biol Chem. 1998 Dec 11;273(50):33311-9 PubMed
J Biol Chem. 1981 Dec 25;256(24):13074-8 PubMed
J Biol Chem. 1998 Sep 11;273(37):24102-7 PubMed