LIME: a new membrane Raft-associated adaptor protein involved in CD4 and CD8 coreceptor signaling
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
14610046
PubMed Central
PMC2194115
DOI
10.1084/jem.20031484
PII: jem.20031484
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny vezikulární transportní genetika imunologie metabolismus MeSH
- antigeny CD4 imunologie MeSH
- antigeny CD8 imunologie MeSH
- C-terminální Src kinasa MeSH
- databáze proteinů MeSH
- fosforylace MeSH
- komplementární DNA MeSH
- lidé MeSH
- membránové mikrodomény imunologie MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- skupina kinas odvozených od src-genu MeSH
- tyrosinkinasa p56(lck), specifická pro lymfocyty metabolismus MeSH
- tyrosinkinasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny vezikulární transportní MeSH
- antigeny CD4 MeSH
- antigeny CD8 MeSH
- C-terminální Src kinasa MeSH
- CSK protein, human MeSH Prohlížeč
- komplementární DNA MeSH
- Lck-interacting protein, mouse MeSH Prohlížeč
- skupina kinas odvozených od src-genu MeSH
- tyrosinkinasa p56(lck), specifická pro lymfocyty MeSH
- tyrosinkinasy MeSH
Lymphocyte membrane rafts contain molecules critical for immunoreceptor signaling. Here, we report identification of a new raft-associated adaptor protein LIME (Lck-interacting molecule) expressed predominantly in T lymphocytes. LIME becomes tyrosine phosphorylated after cross-linking of the CD4 or CD8 coreceptors. Phospho-LIME associates with the Src family kinase Lck and its negative regulator, Csk. Ectopic expression of LIME in Jurkat T cells results in an increase of Csk in lipid rafts, increased phosphorylation of Lck and higher Ca2+ response to CD3 stimulation. Thus, LIME appears to be involved in regulation of T cell activation by coreceptors.
Zobrazit více v PubMed
Harder, T. 2001. Raft membrane domains and immunoreceptor functions. Adv. Immunol. 77:45–92. PubMed
Cherukuri, A., M. Dykstra, and S.K. Pierce. 2001. Floating the raft hypothesis: lipid rafts play a role in immune cell activation. Immunity. 14:657–660. PubMed
Horejsi, V. 2003. The roles of membrane microdomains (rafts) in T cell activation. Immunol. Rev. 191:148–164. PubMed
Saint-Ruf, C., M. Panigada, O. Azogui, P. Debey, H. von Boehmer, and F. Grassi. 2000. Different initiation of pre-TCR and γδTCR signalling. Nature. 406:524–527. PubMed
Fragoso, R., D. Ren, X. Zhang, M.W. Su, S.J. Burakoff, and Y.J. Jin. 2003. Lipid raft distribution of CD4 depends on its palmitoylation and association with Lck, and evidence for CD4-induced lipid raft aggregation as an additional mechanism to enhance CD3 Signaling. J. Immunol. 170:913–921. PubMed
Arcaro, A., C. Gregoire, N. Boucheron, S. Stotz, E. Palmer, B. Malissen, and I.F. Luescher. 2000. Essential role of CD8 palmitoylation in CD8 coreceptor function. J. Immunol. 165:2068–2076. PubMed
Brdicka, T., J. Cerny, and V. Horejsi. 1998. T cell receptor signalling results in rapid tyrosine phosphorylation of the linker protein LAT present in detergent-resistant membrane microdomains. Biochem. Biophys. Res. Commun. 248:356–360. PubMed
Zhang, W., R.P. Trible, and L.E. Samelson. 1998. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity. 9:239–246. PubMed
Brdicka, T., D. Pavlistova, A. Leo, E. Bruyns, V. Korinek, P. Angelisova, J. Scherer, A. Shevchenko, I. Hilgert, J. Cerny, et al. 2000. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase Csk and is involved in regulation of T cell activation. J. Exp. Med. 191:1591–1604. PubMed PMC
Kawabuchi, M., Y. Satomi, T. Takao, Y. Shimonishi, S. Nada, K. Nagai, A. Tarakhovsky, and M. Okada. 2000. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature. 404:999–1003. PubMed
Brdicka, T., M. Imrich, P. Angelisova, N. Brdickova, O. Horvath, J. Spicka, I. Hilgert, P. Luskova, P. Draber, P. Novak, et al. 2002. Non–T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med. 196:1617–1626. PubMed PMC
Janssen, E., M. Zhu, W. Zhang, and S. Koonpaew. 2003. LAB: A new membrane-associated adaptor molecule in B cell activation. Nat. Immunol. 4:117–123. PubMed
Zhang, W., J. Sloan-Lancaster, J. Kitchen, R.P. Trible, and L.E. Samelson. 1998. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell. 92:83–92. PubMed
Cinek, T., and V. Horejsi. 1992. The nature of large noncovalent complexes containing glycosyl- phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. J. Immunol. 149:2262–2270. PubMed
Kirchgessner, H., J. Dietrich, J. Scherer, P. Isomaki, V. Korinek, I. Hilgert, E. Bruyns, A. Leo, A.P. Cope, and B. Schraven. 2001. The transmembrane adaptor protein TRIM regulates T cell receptor (TCR) expression and TCR-mediated signaling via an association with the TCR ζ chain. J. Exp. Med. 193:1269–1284. PubMed PMC
Hobbs, S., S. Jitrapakdee, and J.C. Wallace. 1998. Development of a bicistronic vector driven by the human polypeptide chain elongation factor 1α promoter for creation of stable mammalian cell lines that express very high levels of recombinant proteins. Biochem. Biophys. Res. Commun. 252:368–372. PubMed
Zheng, X.M., Y. Wang, and C.J. Pallen. 1992. Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature. 359:336–339. PubMed
Hur, E.M., M. Son, O.-H. Lee, Y.B. Choi, C. Park, H.S. Lee, and Y. Yun. 2003. LIME, a novel transmembrane adaptor protein, associates with p56lck and mediates T cell activation. J. Exp. Med. 198:1463–1473. PubMed PMC
Yaffe, M.B., G.G. Leparc, J. Lai, T. Obata, S. Volinia, and L.C. Cantley. 2001. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol. 19:348–353. PubMed
Bruyns, E., A. Marie-Cardine, H. Kirchgessner, K. Sagolla, A. Shevchenko, M. Mann, F. Autschbach, A. Bensussan, S. Meuer, and B. Schraven. 1998. T cell receptor (TCR) interacting molecule (TRIM), a novel disulfide-linked dimer associated with the TCR–CD3-ζ complex, recruits intracellular signaling proteins to the plasma membrane. J. Exp. Med. 188:561–575. PubMed PMC
Marie-Cardine, A., H. Kirchgessner, E. Bruyns, A. Shevchenko, M. Mann, F. Autschbach, S. Ratnofsky, S. Meuer, and B. Schraven. 1999. SHP2-interacting transmembrane adaptor protein (SIT), a novel disulfide-linked dimer regulating human T cell activation. J. Exp. Med. 189:1181–1194. PubMed PMC
Zhu, M., E. Janssen, K. Leung, and W. Zhang. 2002. Molecular cloning of a novel gene encoding a membrane-associated adaptor protein (LAX) in lymphocyte signaling. J. Biol. Chem. 277:46151–46158. PubMed
Samelson, L.E. 2002. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20:371–394. PubMed
Baumgartner, M., P. Angelisova, N. Setterblad, N. Mooney, D. Werling, V. Horejsi, and G. Langsley. 2003. Constitutive exclusion of Csk from Hck-positive membrane microdomains permits Src kinase-dependent proliferation of Theileria-transformed B-lymphocytes. Blood. 101:1874–1881. PubMed
Ohtake, H., N. Ichikawa, M. Okada, and T. Yamashita. 2002. Cutting Edge: Transmembrane phosphoprotein Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains as a negative feedback regulator of mast cell signaling through the FcɛRI. J. Immunol. 168:2087–2090. PubMed
Torgersen, K.M., T. Vang, H. Abrahamsen, S. Yaqub, V. Horejsi, B. Schraven, B. Rolstad, T. Mustelin, and K. Tasken. 2001. Release from tonic inhibition of T cell activation through transient displacement of C-terminal Src kinase (Csk) from lipid rafts. J. Biol. Chem. 276:29313–29318. PubMed
Owens, T., B. Fazekas de St Groth, and J.F. Miller. 1987. Coaggregation of the T-cell receptor with CD4 and other T-cell surface molecules enhances T-cell activation. Proc. Natl. Acad. Sci. USA. 84:9209–9213. PubMed PMC
Eichmann, K., J.I. Jonsson, I. Falk, and F. Emmrich. 1987. Effective activation of resting mouse T lymphocytes by cross-linking submitogenic concentrations of the T cell antigen receptor with either Lyt-2 or L3T4. Eur. J. Immunol. 17:643–650. PubMed
Bank, I., and L. Chess. 1985. Perturbation of the T4 molecule transmits a negative signal to T cells. J. Exp. Med. 162:1294–1303. PubMed PMC
Harding, S., P. Lipp, and D.R. Alexander. 2002. A therapeutic CD4 monoclonal antibody inhibits TCR-ζ chain phosphorylation, ζ-associated protein of 70-kDa Tyr319 phosphorylation, and TCR internalization in primary human T cells. J. Immunol. 169:230–238. PubMed
Benjamin, R.J., and H. Waldmann. 1986. Induction of tolerance by monoclonal antibody therapy. Nature. 320:449–451. PubMed
Laub, R., R. Brecht, M. Dorsch, U. Valey, K. Wenk, and F. Emmrich. 2002. Anti-human CD4 induces peripheral tolerance in a human CD4+, murine CD4−, HLA-DR+ advanced transgenic mouse model. J. Immunol. 169:2947–2955. PubMed
Mazerolles, F., C. Barbat, M. Trucy, W. Kolanus, and A. Fischer. 2002. Molecular events associated with CD4-mediated down-regulation of LFA-1-dependent adhesion. J. Biol. Chem. 277:1276–1283. PubMed
Milia, E., M.M. Di Somma, M.B. Majolini, C. Ulivieri, F. Somma, E. Piccolella, J.L. Telford, and C.T. Baldari. 1997. Gene activating and proapoptotic potential are independent properties of different CD4 epitopes. Mol. Immunol. 34:287–296. PubMed
Ulivieri, C., S. Pacini, S. Bartalini, S. Valensin, J.L. Telford, and C.T. Baldari. 1999. Obligatory cross-talk with the tyrosine kinases assembled with the TCR/CD3 complex in CD4 signal transduction. Eur. J. Immunol. 29:2625–2635. PubMed
Newell, M.K., L.J. Haughn, C.R. Maroun, and M.H. Julius. 1990. Death of mature T cells by separate ligation of CD4 and the T-cell receptor for antigen. Nature. 347:286–289. PubMed
Tuosto, L., B. Marinari, and E. Piccolella. 2002. CD4-Lck through TCR and in the absence of Vav exchange factor induces Bax increase and mitochondrial damage. J. Immunol. 168:6106–6112. PubMed
Filipp, D., J. Zhang, B.L. Leung, A. Shaw, S.D. Levin, A. Veillette, and M. Julius. 2003. Regulation of Fyn through translocation of activated Lck into lipid rafts. J. Exp. Med. 197:1221–1227. PubMed PMC
Schaller, M.D., and J.T. Parsons. 1995. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol. Cell. Biol. 15:2635–2645. PubMed PMC
Cao, H., W.E. Courchesne, and C.C. Mastick. 2002. A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J. Biol. Chem. 277:8771–8774. PubMed
Wang, B., S. Lemay, S. Tsai, and A. Veillette. 2001. SH2 domain-mediated interaction of inhibitory protein tyrosine kinase Csk with protein tyrosine phosphatase-HSCF. Mol. Cell. Biol. 21:1077–1088. PubMed PMC
Arbet-Engels, C., S. Tartare-Deckert, and W. Eckhart. 1999. C-terminal Src kinase associates with ligand-stimulated insulin-like growth factor-I receptor. J. Biol. Chem. 274:5422–5428. PubMed
Shah, K., and K.M. Shokat. 2002. A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway. Chem. Biol. 9:35–47. PubMed
Pfrepper, K.I., A. Marie-Cardine, L. Simeoni, Y. Kuramitsu, A. Leo, J. Spicka, I. Hilgert, J. Scherer, and B. Schraven. 2001. Structural and functional dissection of the cytoplasmic domain of the transmembrane adaptor protein SIT (SHP2-interacting transmembrane adaptor protein). Eur. J. Immunol. 31:1825–1836. PubMed
Ishino, M., H. Aoto, H. Sasaski, R. Suzuki, and T. Sasaki. 2000. Phosphorylation of Hic-5 at tyrosine 60 by CAKβ and Fyn. FEBS Lett. 474:179–183. PubMed
Songyang, Z., S.E. Shoelson, J. McGlade, P. Olivier, T. Pawson, X.R. Bustelo, M. Barbacid, H. Sabe, H. Hanafusa, T. Yi, et al. 1994. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14:2777–2785. PubMed PMC