Issues in stem cell plasticity
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
15601587
PubMed Central
PMC6740252
DOI
10.1111/j.1582-4934.2004.tb00483.x
PII: 008.004.18
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace MeSH
- buněčný rodokmen MeSH
- embryo savčí cytologie MeSH
- fúze buněk MeSH
- hematopoetické kmenové buňky cytologie MeSH
- kmenové buňky cytologie MeSH
- lidé MeSH
- multipotentní kmenové buňky cytologie MeSH
- pluripotentní kmenové buňky cytologie MeSH
- transplantace kmenových buněk MeSH
- zárodečné buňky cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Experimental biology and medicine work with stem cells more than twenty years. The method discovered for in vitro culture of human embryonal stem cells acquired at abortions or from "surplus" embryos left from in vitro fertilization, evoked immediately ideas on the possibility to aim development and differentiation of these cells at regeneration of damaged tissues. Recently, several surprising observations proved that even tissue-specific (multipotent) stem cells are capable, under suitable conditions, of producing a whole spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This ability is frequently called stem cell plasticity but other authors also use different names - "non-orthodox differentiation" or "transdifferentiation". In this paper we wish to raise several important questions and problems related to this theme. Let us remind some of them: Is it possible to force cells of one-type tissue to look and act as cells of another tissue? Are these changes natural? Could these transformations be used to treat diseases? What about the bioethic issue? However, the most serious task "still remains to be solved - how to detect, harvest and culture stem cells for therapy of certain diseases".
Zobrazit více v PubMed
Smith A. Embryonic stem cells. Marshak D.R., Gardner D.K., and Gottlieb D. eds. Cold Spring Harbor Laboratory Press., 205–230, 2001.
Wilmut I., Beaujean N., de Sousa P.A., Dinnyes A., King T.J., Paterson L.A., Wells D.N., Young L.E., Somatic cell nuclear transfer, Nature, 419: 583–583, 2002. PubMed
Filip S., Mokrý J., Hruška I., Adult stem cells and their importance in cell therapy, Folia Biol.(Prague), 49: 9–14, 2003. PubMed
Brazelton T.R., Rossi F.M., Keshet G.I., Blau H.M., From marrow to brain: expression of neuronal phenotypes in adult mice, Science, 290: 1775–1779, 2000. PubMed
Krause D.S., Theise N.D., Collector M.I., Henegariu O., Hwang S., Gardner R., Neutzel S., Sharkis S.J., Multi‐organ, multi‐lineage engraftment by a single bone marrow‐derived stem cell, Cell, 105: 369–377, 2001. PubMed
Quesenberry P.J., Abedi M., Aliotta J., Colvin G., Demers D., Dooner M., Greer D., Hebert H., Menon M.K., Pimentel J., Paggioli D., Stem cell plasticity: an overview, Blood Cells Mol. Dis., 32: 1–4, 2004. PubMed
Bianco P., Cossu G., Uno, nessuno e centomila: searching for the identity of mesodermal progenitors, Exp. Cell Res., 251: 257–263, 1999. PubMed
Anderson D.J., Gage F.H., Weissman I.L. Can stem cells cross lineage boundaries?, Nat. Med., 7: 393–395, 2001. PubMed
Lagasse E., Connors H., Al‐Dhalimy M., Reitsma M., Dohse M., Osborne L., Wang X., Finegold M., Weissman I.L., Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6: 1229–1234, 2000. PubMed
Rutenberg M.S., Hamazaki T. Singh A. M., Terada N., Stem cell plasticity, beyond alchemy, Int. J. Hematol., 79: 15–21, 2004. PubMed
Krause D. S., Plasticity of marrow‐derived stem cells, Gene Ther., 9: 754–758, 2002. PubMed
Verfaillie CM., Adult stem cells: assessing the case for pluripotency, Trends Cell Biol., 12: 502–508, 2002. PubMed
Verfaillie C.M., Pera M.F., Lansdorp P.M. Stem cells, hype and reality. Hematology (Am. Soc. Hematol. Educ. Program), 369–391, 2002. PubMed
Eisenberg L.M., Eisenberg C.A., Stem cell plasticity, cell fusion, and transdifferentiation, Birth Defect Res. Part. C. Embryo Today, 69: 209–218, 2003. PubMed
Martin‐Redon E., Watt S.M., Exploitation of stem cell plasticity, Transfusion Medicine, 13: 325–349, 2003. PubMed
Almeida‐Porada G., Porada C., Zanjani E.D., Plasticity of human stem cells in the fetal sheep model of human stem cell transplantation, Int. J. Hematol., 79: 1–6, 2004. PubMed
Huttmann A., Li C.L., Duhrsen U., Bone marrow‐derived stem cells and “plasticity”, Ann. Hematol., 82: 599–604, 2003. PubMed
Verfaillie C.M., Schwartz R., Reyes M., Jianf Y., Unexpected potential of adult stem cells, Ann. N.Y. Acad. Sci., 996: 231–234, 2003. PubMed
Vogel G. Stem cell policy, can adult stem cells suffice?, Science, 292: 1820–1822, 2001. PubMed
Deisseroth K., Singla S., Toda H., Monje M., Palmer T.D., Malenka R.C., Excitation ‐ neurogenesis coupling in adult neural stem/progenitor cells, Neuron, 42: 535–552, 2004. PubMed
Raff M. Adult stem cell plasticity: fact or artifact?, Annu. Rev. Cell. Biol., 19: 1–22, 2003. PubMed
Goodell M.A., Stem‐cell “plasticity”: befuddled by the muddle, Curr. Opin. Hematol., 10: 208–213, 2003. PubMed
Till J.E., McCulloch E.A., A direct measurement of the radiation sensitivity of normal mouse bone marrow cells, Radiat. Res., 14: 213–222, 1961. PubMed
Heike T., Nakahata T., Stem cell plasticity in the hematopoietic system, Int. J. Hematol., 79: 7–14, 2004. PubMed
Lagasse E., Shizuru J.A., Uchida N., Tsukamoto A., Weissman I.L., Toward regenerative medicine, Immunity, 14: 425–436, 2001. PubMed
Weissman I.L., Transplanting stem and progenitor cell biology to the clinic: bariers and opportunities, Science, 287: 1442–1446, 2000. PubMed
Weissman I.L., Anderson D. J., Gage F., Stem and progenitor cells: origins, phenotypes, lineage, commitment, and transdifferentiations, Annu. Rev. Cell. Dev. Biol., 17: 387–403, 2001. PubMed
Björnson C.R., Rietze R.L., Reynolds B.A., Magli M.C., Vescovi A.L. A turning brain into blood a hematopoietic fate adopted by neural stem cells in vivo. Science 283: 534–537, 1999. PubMed
Van der Kooy D., Weiss S. Why stem cells Science, 287: 1439–1441, 2000. PubMed
Clarke D.L., Johansson C.B., Wilbertz J., Veress B., Nilsson E., Karlstrom H., Lendahl U., Frisen J. Generalized potential of adult stem cells. Science 288: 1660–1663, 2000. PubMed
Frisen J. Stem cell plasticity?, Neuron, 35: 415–418, 2002. PubMed
Wang X., Willenbring H., Akkari Y., Torimaru Y., Foster M., Al‐Dhalimy M., Lagasse E., Finegold M., Olson S., Grompe M. Cell fusion is the principal source of bone‐marrow‐derived hepatocytes. Nature, 24, 422: 897–901, 2003. PubMed
Jiang Y., Jahagirdar B.N., Reinhardt R.L., Schwartz R.E., Keene C.D., Ortiz‐Gonzalez X.R., Reyes M., Lenvik T., Lund T., Blackstad M., Du J., Aldrich S., Lisberg A., Low W.C., Largaespada D.A., Verfaillie C.M., Pluripotency of mesenchymal stem cells derived from adult marrow, Nature, 418: 41–49, 2002. PubMed
Filip S., Mokrý J., Karbanová J., Vávrová J., English D., Local envirometal factors determine hematopoietic differentiation of neural stem cells, Stem Cells Dev., 13: 113–120, 2004. PubMed
Schwartz R.E., Reyes M., Koodie L., Jiang Y., Blackstad M., Lund T., Lenvik T., Johnson S., Hu W.S., Verfaillie C.M., Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte‐like cells, J. Clin. Invest., 109: 1291–302, 2002. PubMed PMC
Khoszotehrani K., Bianchi D.W. Fetal cell micro‐chimerism: helpful or harmful to the parous woman?, Curr. Opin. Obstet. Gynecol., 15: 195–199, 2003. PubMed
Alison M.R., Poulson R., Jeffery R., Quaglia A., Jacob J., Novelli M., Prentice G., Williamson J., Wright N.A. Hepatocytes from non‐hepatic adult stem cells. Nature 406: 257, 2000. PubMed
Lisker R., Ethical and legal issues in therapeutic cloning and the study stem cells, Arch. Med. Res., 34: 607–611, 2003. PubMed
Lemischka I. The power of stem cells reconsidered?, Proc. Natl. Acad. Sci. USA, 96: 14193–14195, 1999. PubMed PMC
Lemischka I., A few thoughts about the plasticity of stem cells, Exp. Hematol., 30: 848–852, 2002. PubMed
Mc Culloch E.A., Stem cells and diversity, Leukemia, 17: 1042–1048, 2003. PubMed
Soria B., Roche E., Berna G., Leon‐Quinto T., Reig J.A., Martin F., Insulin‐secreting cells derived from embryonic stem cells normalize glycemia in streptozocin‐induced diabetes mice, Diabetes, 49: 157–162, 2000. PubMed
McDonald J.W., Liu X.Z., Qu Y., Liu S., Mickey S.K., Turetsky D., Gottlieb D.I., Choi D.W., Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord, Nat. Med., 5: 1410–1412, 1999. PubMed
Horwitz E.M., Prockop D.J., Gordon P.L., Koo W.W., Fitzpatrick L.A., Neel M.D., McCarville M.E., Orchard P.J., Pyeritz R.E., Brenner M.K. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97: 1227–31, 2001. PubMed
Snyder E.Y., Daley G.Q., Goodell M., Taking stock and planing for the next decade: realistic prospects for stem cell therapies for the nervous sytem, J. Neurosci. Res., 76: 157–168, 2004. PubMed
Wang F.S., Trester C., Bone marrow cells and myocardial regeneration, Int. J. Hematol., 79: 322–327, 2004. PubMed