Substituted pyrazinecarboxamides: synthesis and biological evaluation
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
PubMed
17962755
PubMed Central
PMC6148570
DOI
10.3390/11040242
PII: 11040242
Knihovny.cz E-resources
- MeSH
- Amides chemical synthesis pharmacology MeSH
- Anti-Bacterial Agents chemical synthesis pharmacology MeSH
- Antifungal Agents chemical synthesis pharmacology MeSH
- Photosynthesis drug effects MeSH
- Carboxylic Acids chemistry MeSH
- Mycobacterium tuberculosis drug effects MeSH
- Pyrazines chemistry MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Amides MeSH
- Anti-Bacterial Agents MeSH
- Antifungal Agents MeSH
- Carboxylic Acids MeSH
- Pyrazines MeSH
Condensation of the corresponding chlorides of some substituted pyrazine-2-carboxylic acids (pyrazine-2-carboxylic acid, 6-chloropyrazine-2-carboxylic acid, 5-tert-butylpyrazine-2-carboxylic acid or 5-tert-butyl-6-chloropyrazine-2-carboxylic acid) with various ring-substituted aminothiazoles or anilines yielded a series of amides. The syntheses, analytical and spectroscopic data of thirty newly prepared compounds are presented. Structure-activity relationships between the chemical structures and the anti-mycobacterial, antifungal and photosynthesis-inhibiting activity of the evaluated compounds are discussed. 3,5-Bromo-4-hydroxyphenyl derivatives of substituted pyrazinecarboxylic acid, 16-18, have shown the highest activity against Mycobacterium tuberculosis H(37)Rv (54-72% inhibition). The highest antifungal effect against Trichophyton mentagrophytes, the most susceptible fungal strain tested, was found for 5-tert-butyl-6-chloro-N-(4-methyl-1,3-thiazol-2-yl)pyrazine-2-carboxamide (8, MIC =31.25 micromol x mL(-1)). The most active inhibitors of oxygen evolution rate in spinach Molecules 2006, 11,243 chloroplasts were the compounds 5-tert-butyl-6-chloro-N-(5-bromo-2-hydroxyphenyl)- pyrazine-2-carboxamide (27, IC(50) = 41.9 micromol x L(-1)) and 5-tert-butyl-6-chloro-N-(1,3- thiazol-2-yl)-pyrazine-2-carboxamide (4, IC50 = 49.5 micromol x L(-1)).
See more in PubMed
Blumberg H.M., Leonard M.K., Jasmer R.M. Update on the treatment of tuberculosis and latent tuberculosis infection. JAMA - J. Am. Med. Assoc. 2005;293:2776–2784. PubMed
Duncan K. Progress in TB drug development and what is still needed. Tuberculosis. 2003;83:201–207. doi: 10.1016/S1472-9792(02)00076-8. PubMed DOI
Fromtling R.A. Current developments in antibacterial and antifungal chemotherapy. Drug News Perspect. 1997;10:557–572.
Zhang Y., Mitchison D. The curious characteristics of pyrazinamide: a review. Int. J. Tubercul. Lung Dis. 2003;7:6–21. PubMed
Dlabal K., Dolezal M., Machacek M. Preparation of some 6-substituted N-pyrazinyl-2-pyrazinecarboxamides. Collect. Czech. Chem. Commun. 1993;58:452–454.
Miletin M., Hartl J., Machacek M. Synthesis of some anilides of 2-alkyl-4-pyridinecarboxylic acids and their photosynthesis-inhibiting activity. Collect. Czech. Chem. Commun. 1997;62:672–678. doi: 10.1135/cccc19970672. DOI
Dolezal M., Hartl J., Miletin M., Machacek M., Kralova K. Synthesis and photosynthesis-inhibiting activity of some anilides of substituted pyrazine-2-carboxylic acids. Chem. Pap. 1999;53:126–130.
Dolezal M., Vicik R., Miletin M., Kralova K. Synthesis and antimycobacterial, antifungal, and photosynthesis-inhibiting evaluation of some anilides of substituted pyrazine-2-carboxylic acids. Chem. Pap. 2000;54:245–248.
Dolezal M., Miletin M., Kunes J., Kralova K. Synthesis and biological evaluation of some amides of pyrazine-2-carboxylic acids. Molecules. 2002;7:363–373. doi: 10.3390/70300363. DOI
Good N.E. Inhibitors of the Hill reaction. Plant. Physiol. 1961;36:788–803. doi: 10.1104/pp.36.6.788. PubMed DOI PMC
Kralova K., Sersen F., Cizmarik J. Dimethylaminoethyl alkoxyphenylcarbamates as photosynthesis inhibitors. Chem. Pap. 1992;46:266–268.
Kralova K., Sersen F., Miletin M., Hartl J. Inhibition of photosynthetic electron transport by some anilides of 2-alkylpyridine-4-carboxylic acids in spinach chloroplasts. Chem. Pap. 1998;52:52–55.
Kubicova L., Sustr M., Kralova K., Chobot V., Vytlacilova J., Jahodar L., Vuorela P., Machacek M., Kaustova J. Synthesis and biological evaluation of quinazoline-4-thiones. Molecules. 2003;8:756–769.
Dolezal M., Jampilek J., Osicka Z., Kunes J., Buchta V., Vichova P. Substituted 5-aroylpyrazine-2-carboxylic acid derivatives: synthesis and biological activity. Farmaco. 2003;58:1105–1111. doi: 10.1016/S0014-827X(03)00163-0. PubMed DOI
Dolezal M., Hartl J., Miletin M. Antimycobacterial evaluation of some anilides of pyrazine-2-carboxylic acid. Folia Pharm. Univ. Carol. 2000;25:15–19.
Kushner S., Dalalian H., Sanjurjo J.L., Bach F.L., Safir S.R., Smith V.K., Williams J.H. Experimental chemotherapy of tuberculosis. II. The synthesis of pyrazinamides and related compounds. J. Amer. Chem. Soc. 1952;74:3617–3621.
Avdeef A. Psysicochemical profiling (solubility, permeability and charge state) Curr. Topics Med. Chem. 2001;1:277–351. PubMed
Pliska V. Lipophilicity: the empirical tool and the fundamental objective. In: Pliska V., Testa B., van der Waterbeemd H., editors. Lipophilicity in Drug Action and Toxicology. Wiley-VCH; Weinheim: 1996. pp. 1–6.
Valko K. Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J. Chromatogr. A. 2004;1037:299–310. PubMed
Foks H., Sawlewicz J. N-Oxides of pyrazine-2-carboxylic acid. Acta Polon. Pharm. 1964;21:429–436. PubMed
Abe Y., Shigeta Y., Uchimaru F., Okada S., Ozasayama E. Methyl 6-methoxypyrazine-2-carboxylate. Japan. 1969;69:12,898. Chem. Abstr.1969, 71, 112979y.
[(19 July 2005)]. Available online: http://www.taacf.org/about-TAACF.htm.
Collins L., Franzblau S.G. Microplate Alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother. 1997;41:1004–1009. PubMed PMC
National Committee for Clinical Laboratory Standards; Villanova, PA: 1992. National Committee for Clinical Laboratory Standards: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Proposed Standard M 27-P.
Jegerschold C., Styring S. Fast oxygen-independent degradation of the D1 reaction center protein in photosystem-II. FEBS Lett. 1991;280:87–90. doi: 10.1016/0014-5793(91)80210-T. PubMed DOI
Carpentier R., Fuerst E.P., Nakatani H.Y., Arntzen C.J. A 2nd site for herbicide action in photosystem-II. Biochim. Biophys. Acta. 1985;808:293–299. doi: 10.1016/0005-2728(85)90012-X. DOI
Dolezal M., Hartl J., Lycka A., Buchta V., Odlerova Z. Synthesis and Antituberculotic Properties of Some Substituted Pyrazinecarbothioamides. Collect. Czech. Chem. Commun. 1996;61:1102–1108. doi: 10.1135/cccc19961102. DOI
Design, Synthesis and Evaluation of N-pyrazinylbenzamides as Potential Antimycobacterial Agents
Investigating biological activity spectrum for novel styrylquinazoline analogues
Substituted N-Phenylpyrazine-2-carboxamides: synthesis and antimycobacterial evaluation
Ring-substituted 4-hydroxy-1H-quinolin-2-ones: preparation and biological activity
Salicylanilide acetates: synthesis and antibacterial evaluation