Substituted N-phenylpyrazine-2-carboxamides, their synthesis and evaluation as herbicides and abiotic elicitors
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
18259145
PubMed Central
PMC6149141
DOI
10.3390/12122589
PII: 12122589
Knihovny.cz E-resources
- MeSH
- Acetamides chemical synthesis chemistry pharmacology MeSH
- Chlorella vulgaris drug effects MeSH
- Chlorophyll metabolism MeSH
- Chloroplasts drug effects MeSH
- Flavonoids metabolism MeSH
- Herbicides chemical synthesis chemistry pharmacology MeSH
- Oxygen MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- acetamide MeSH Browser
- Acetamides MeSH
- Chlorophyll MeSH
- Flavonoids MeSH
- Herbicides MeSH
- Oxygen MeSH
The condensation of substituted pyrazine-2-carboxylic acid chlorides with ring-substituted anilines yielded five substituted pyrazine-2-carboxylic acid amides. Thesynthesis, and analytical, lipophilicity and biological data of the newly synthesizedcompounds are presented in this paper. The photosynthesis inhibition, antialgal activityand the effect of a series of pyrazine derivatives as abiotic elicitors on the accumulation offlavonoids in a callus culture of Ononis arvensis (L.) were investigated. The most activeinhibitor of the oxygen evolution rate in spinach chloroplasts was 6-chloro-pyrazine-2-carboxylic acid (3-iodo-4-methylphenyl)-amide (2, IC(50) = 51.0 micromol.L(-1)). The highestreduction of chlorophyll content in Chlorella vulgaris was found for 5-tert-butyl-N-(4-chloro-3-methylphenyl)-pyrazine-2-carboxamide (3, IC(50) = 44.0 micromol.L(-1)). The maximalflavonoid production (about 900%) was reached after a twelve-hour elicitation processwith 6-chloropyrazine-2-carboxylic acid (3-iodo-4-methylphenyl)-amide (2).
See more in PubMed
Angelova Z., Georgiev S., Roos W. Elicitation of plants. Biotechnol. Biotechnol. Eq. 2006;20:72–83. doi: 10.1080/13102818.2006.10817345. DOI
Dolezal M. Biological active pyrazines of natural and synthetic origin. Chem. Listy. 2006;100:959–966.
Dolezal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted Pyrazinecarboxamides; Synthesis and Their Biological Evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC
Dolezal M., Cmedlova P., Palek L., Vinsova J., Kunes J., Buchta V., Jampilek J., Kralova K. Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. Eur. J. Med. Chem. 2008;43 in press. PubMed
Janin Y. L. Antituberculosis drugs: Ten years of research. Bioorg. Med. Chem. 2007;15:2479–2513. doi: 10.1016/j.bmc.2007.01.030. PubMed DOI
Tripathi R. P., Tewari N., Dwivedi N., Tiwari V. K. Fighting tuberculosis: An old disease with new challenges. Med. Res. Rev. 2005;25:93–131. doi: 10.1002/med.20017. PubMed DOI
Ricci D., Maggiali C.A., Ronchini F., Tirillini B., Fraternale D. Phytochemistry. 1991;30:2821–2824. doi: 10.1016/S0031-9422(00)98205-0. DOI
Camper N. D., McDonald S. K. Tissue and cell cultures as model system in herbicide research. Rev. Weed Sci. 1989;4:169–190.
Linsmaier E., Skoog F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 1965;18:100–127. doi: 10.1111/j.1399-3054.1965.tb06874.x. DOI
Schmitz R. V., Skoog F., Hecht S. M., Leonard N. J. Comparison of zeatin indoleacetate with zeatin and indoleacetic acid in tobacco bioassay. Plant. Physiol. 1972;50:114–116. doi: 10.1104/pp.50.1.114. PubMed DOI PMC
Huffman J. B., Camper N. D. Growth inhibition in tobacco (Nicotiana tabacum) callus by 2,6-dinitroaniline herbicides and protection by D-α-tocopherol acetate. Weed Sci. 1978;26:527–530.
Tumova L., Ostrozlik P. Ononis arvensis in vitro - Abiotic elicitation. Cesk. Slov. Farm. 2002;51:173–176. PubMed
Tumova L., Gallova K., Rimakova J., Dolezal M., Tuma J. The effect of substituted amides of pyrazine-2-carboxylic acids on flavolignan production in Silybum marianum culture in vitro. Acta Physiol. Plant. 2005;27:357–362.
Dolezal M., Kralova K., Sersen F., Miletin M. The site of action of some anilides of pyrazine-2-carboxylic acids in the photosynthetic apparatus. Folia Pharm. Univ. Carol. 2001;26:13–20.
Abe Y., Shigeta Y., Uchimaru F., Okada S., Ozasayama E. 69 12,898. Japanese Patent. 1969 [Chem. Abstr. 1969, 71, 112979y]
Dolezal M., Hartl J., Miletin M., Machacek M., Kralova K. Chem. Pap. 1999;53:126–128.
Walker D. A. In: Methods in Enzymology Part C. Colowick S.P., Kaplan N.O., editors. Vol. 69. Academic Press; New York: 1980. pp. 94–104.
Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.
Fedke C. Biochemistry and Physiology of Herbicide Action. Springer Verlag; Berlin-Heidelberg-New York: 1982.
Kralova K., Sersen F., Melnik M. Inhibition of photosynthesis in Chlorella vulgaris by Cu(II) complexes with biologically active ligands. J. Trace Microprobe Techn. 1998;16:491–500.
Wellburn A. R. The spectral determination of chlorophyll-A and chlorophyll-B, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant. Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI
Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–479. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Czech Pharmacopea 1997. Grada; Prague: 1997. p. 1491.
Substituted N-benzylpyrazine-2-carboxamides: synthesis and biological evaluation
Substituted N-Phenylpyrazine-2-carboxamides: synthesis and antimycobacterial evaluation