Immune response and cytokine production following immunization with experimental herpes simplex virus 1 (HSV-1) vaccines
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
- MeSH
- aktivace lymfocytů MeSH
- buněčné linie MeSH
- cytokiny biosyntéza imunologie MeSH
- imunizace * MeSH
- krevní buňky imunologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- lidský herpesvirus 1 genetika imunologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- protilátky virové krev MeSH
- Simplexvirus imunologie MeSH
- T-lymfocyty imunologie MeSH
- vakcína proti viru herpes simplex aplikace a dávkování imunologie MeSH
- virové proteiny genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- cytokiny MeSH
- protilátky virové MeSH
- vakcína proti viru herpes simplex MeSH
- virové proteiny MeSH
Balb/c mice were immunized with the recombinant fusion protein gD1/313 (FpgD1/313 representing the ectodomain of HSV-1 gD), with the non-pathogenic ANGpath gE-del virus, with the plasmid pcDNA3.1-gD expressing full-length gD1 and with the recombinant immediate early (IE) HSV-1 protein ICP27. Specific antibodies against these antigens (as detected by ELISA) reached high titers with the exception of the DNA vaccine. High-grade protection against challenge with the virulent strain SC16 was found following immunization with the pcDNA3.1-gD plasmid and with the gE-del virus. Medium grade, but satisfactory protection developed after immunization with the FpgD1/313 and minimum grade protection was seen upon immunization with the IE/ICP27 polypeptide. A considerable response of peripheral blood cells (PBL) and splenocytes in the lymphocyte transformation test (LTT) was found in mice immunized with FpgD1/313, with the pcDNA3.1-gD plasmid and with the live ANGpathgE-del virus. For lymphocyte stimulation in vitro, the FpgD1/313 antigen was less effective than the purified gD1/313 polypeptide (cleaved off from the fusion protein); both proteins elicited higher proliferation at the 5 microg per 0.1 mL dose than at the 1 microg per 0.1 mL dose. The secretion of Th type 1 (TNF, IFN-gamma and IL-2) and Th type 2 (IL-4 and IL-6) cytokines was tested in the medium fluid of purified PBL and splenocyte cultures; their absolute values were expressed in relative indexes. The PBL from FpgD1/313 immunized mice showed increased secretion of both T(H)1 (TNF) as well as T(H)2 (IL-4) cytokines (7-10-fold, respectively). Splenocytes from FpgD1/313 immunized mice showed a significant (23-fold) increase in IL-4 production.
Zobrazit více v PubMed
J Gen Virol. 1986 Jun;67 ( Pt 6):1001-13 PubMed
J Infect Dis. 2000 Nov;182(5):1311-20 PubMed
Vaccine. 1996 Sep;14(13):1230-4 PubMed
J Gen Virol. 1990 Apr;71 ( Pt 4):863-71 PubMed
Acta Virol. 2004;48(2):97-107 PubMed
Vaccine. 1998 Nov;16(19):1822-7 PubMed
Neurosci Lett. 2004 Jul 8;364(3):173-8 PubMed
J Virol. 1997 Aug;71(8):6083-93 PubMed
J Immunol. 1996 Oct 15;157(8):3542-9 PubMed
Vaccine. 1991 Mar;9(3):147-53 PubMed
Virus Genes. 2002 Oct;25(2):179-88 PubMed
Proc Natl Acad Sci U S A. 1987 Aug;84(15):5454-8 PubMed
Antiviral Res. 2001 Feb;49(2):83-99 PubMed
J Gen Virol. 1989 Sep;70 ( Pt 9):2513-20 PubMed
Vaccine. 2005 Jan 4;23(7):865-72 PubMed
J Infect Dis. 2003 Feb 15;187(4):542-9 PubMed
J Virol. 1987 Feb;61(2):600-3 PubMed
Vaccine. 2001 Jan 8;19(11-12):1538-46 PubMed
Immunol Rev. 2006 Aug;212:272-86 PubMed
Vaccine. 2000 Aug 1;18(28):3242-53 PubMed
Eur J Immunol. 2005 May;35(5):1454-62 PubMed
J Virol. 1985 Feb;53(2):634-44 PubMed
J Virol. 1987 Nov;61(11):3356-64 PubMed
Int Rev Immunol. 2002 Jul-Oct;21(4-5):355-71 PubMed
J Virol. 1995 Aug;69(8):4711-6 PubMed
J Immunol. 1987 May 15;138(10):3431-7 PubMed
Rev Infect Dis. 1991 Nov-Dec;13 Suppl 11:S924-34 PubMed
J Interferon Cytokine Res. 1998 Sep;18(9):681-90 PubMed
J Virol Methods. 2001 Apr;92(2):121-9 PubMed
J Immunol. 1999 Mar 1;162(5):2912-21 PubMed
Rev Med Virol. 2005 Sep-Oct;15(5):303-25 PubMed
Virol J. 2005 Aug 03;2:59 PubMed
J Gen Virol. 2003 Sep;84(Pt 9):2497-2500 PubMed
J Virol. 2004 Dec;78(23):13139-52 PubMed
Folia Microbiol (Praha). 2006;51(2):67-85 PubMed
Clin Infect Dis. 2000 Mar;30(3):549-66 PubMed
J Virol. 1988 May;62(5):1530-4 PubMed
J Immunol. 2005 Jan 15;174(2):1037-45 PubMed
J Virol. 1987 Aug;61(8):2438-47 PubMed
Blood. 2004 Feb 15;103(4):1433-7 PubMed
Vaccine. 2002 Jun 21;20(21-22):2796-807 PubMed
J Infect Dis. 1994 Nov;170(5):1110-9 PubMed
Vaccine. 1997 Jun;15(8):857-60 PubMed
Vaccine. 2003 Mar 7;21(11-12):1239-45 PubMed
J Virol. 2003 May;77(10):5774-83 PubMed
Invest Ophthalmol Vis Sci. 2005 Apr;46(4):1356-63 PubMed
Med Microbiol Immunol. 1990;179(3):145-59 PubMed
Vaccine. 1995 Dec;13(17):1706-12 PubMed
Virology. 1996 Jun 15;220(2):402-13 PubMed
Curr Top Microbiol Immunol. 1998;226:69-78 PubMed
J Immunol. 1999 Jul 15;163(2):675-81 PubMed
Virus Res. 1996 Jul;43(1):33-44 PubMed
Acta Virol. 1995 Feb;39(1):37-49 PubMed
J Virol. 2001 Feb;75(3):1195-204 PubMed
J Virol. 1992 Nov;66(11):6668-85 PubMed
J Virol. 1987 Nov;61(11):3607-11 PubMed
Virology. 1990 Feb;174(2):375-87 PubMed
J Virol. 1986 Oct;60(1):157-66 PubMed
J Exp Med. 2000 May 1;191(9):1459-66 PubMed
Jpn J Ophthalmol. 2002 Jul-Aug;46(4):370-76 PubMed
J Virol. 2000 Apr;74(8):3909-17 PubMed
J Gen Virol. 2000 Dec;81(Pt 12):3011-3020 PubMed
J Gen Virol. 2001 Apr;82(Pt 4):845-853 PubMed
Antiviral Res. 1988 Nov;10(1-3):83-8 PubMed