The Fe/S cluster assembly protein Isd11 is essential for tRNA thiolation in Trypanosoma brucei
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
R01 AI065935
NIAID NIH HHS - United States
R01 GM084065
NIGMS NIH HHS - United States
AI065935
NIAID NIH HHS - United States
GM084065
NIGMS NIH HHS - United States
PubMed
20442400
PubMed Central
PMC2903368
DOI
10.1074/jbc.m109.083774
PII: S0021-9258(20)60275-7
Knihovny.cz E-resources
- MeSH
- Aconitate Hydratase metabolism MeSH
- Cytosol metabolism MeSH
- Phenotype MeSH
- Fumarate Hydratase metabolism MeSH
- Membrane Potential, Mitochondrial MeSH
- Mitochondrial Proteins metabolism MeSH
- Mitochondria metabolism MeSH
- Iron-Sulfur Proteins metabolism MeSH
- Protozoan Proteins metabolism MeSH
- RNA Interference MeSH
- RNA, Protozoan metabolism MeSH
- RNA, Transfer metabolism MeSH
- Protein Stability MeSH
- Sulfhydryl Compounds metabolism MeSH
- Trypanosoma brucei brucei cytology enzymology growth & development metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Aconitate Hydratase MeSH
- Fumarate Hydratase MeSH
- Mitochondrial Proteins MeSH
- Iron-Sulfur Proteins MeSH
- Protozoan Proteins MeSH
- RNA, Protozoan MeSH
- RNA, Transfer MeSH
- Sulfhydryl Compounds MeSH
Fe/S clusters are part of the active site of many enzymes and are essential for cell viability. In eukaryotes the cysteine desulfurase Nfs (IscS) donates the sulfur during Fe/S cluster assembly and was thought sufficient for this reaction. Moreover, Nfs is indispensable for tRNA thiolation, a modification generally required for tRNA function and protein synthesis. Recently, Isd11 was discovered as an integral part of the Nfs activity at an early step of Fe/S cluster assembly. Here we show, using a combination of genetic, molecular, and biochemical approaches, that Isd11, in line with its strong association with Nfs, is localized in the mitochondrion of T. brucei. In addition to its involvement in Fe/S assembly, Isd11 also partakes in both cytoplasmic and mitochondrial tRNA thiolation, whereas Mtu1, another protein proposed to collaborate with Nfs in tRNA thiolation, is required for this process solely within the mitochondrion. Taken together these data place Isd11 at the center of these sulfur transactions and raises the possibility of a connection between Fe/S metabolism and protein synthesis, helping integrate two seemingly unrelated pathways.
See more in PubMed
Lill R., Mühlenhoff U. (2008) Annu. Rev. Biochem. 77, 669–700 PubMed
Lill R. (2009) Nature 460, 831–838 PubMed
Zheng L., White R. H., Cash V. L., Dean D. R. (1994) Biochemistry 33, 4714–4720 PubMed
Gerber J., Mühlenhoff U., Lill R. (2003) EMBO Rep. 4, 906–911 PubMed PMC
Ramazzotti A., Vanmansart V., Foury F. (2004) FEBS Lett. 557, 215–220 PubMed
Adam A. C., Bornhövd C., Prokisch H., Neupert W., Hell K. (2006) EMBO J. 25, 174–183 PubMed PMC
Wiedemann N., Urzica E., Guiard B., Müller H., Lohaus C., Meyer H. E., Ryan M. T., Meisinger C., Mühlenhoff U., Lill R., Pfanner N. (2006) EMBO J. 25, 184–195 PubMed PMC
Marelja Z., Stöcklein W., Nimtz M., Leimkühler S. (2008) J. Biol. Chem. 283, 25178–25185 PubMed
Shi Y., Ghosh M. C., Tong W. H., Rouault T. A. (2009) Hum. Mol. Genet. 18, 3014–3025 PubMed PMC
Mühlenhoff U., Balk J., Richhardt N., Kaiser J. T., Sipos K., Kispal G., Lill R. (2004) J. Biol. Chem. 279, 36906–36915 PubMed
Goldberg A. V., Molik S., Tsaousis A. D., Neumann K., Kuhnke G., Delbac F., Vivares C. P., Hirt R. P., Lill R., Embley T. M. (2008) Nature 452, 624–628 PubMed
Richards T. A., van der Giezen M. (2006) Mol. Biol. Evol. 23, 1341–1344 PubMed
Shan Y., Napoli E., Cortopassi G. (2007) Hum. Mol. Genet. 16, 929–941 PubMed
Esberg A., Huang B., Johansson M. J., Byström A. S. (2006) Mol. Cell 24, 139–148 PubMed
Nakai Y., Umeda N., Suzuki T., Nakai M., Hayashi H., Watanabe K., Kagamiyama H. (2004) J. Biol. Chem. 279, 12363–12368 PubMed
Nakai Y., Nakai M., Lill R., Suzuki T., Hayashi H. (2007) Mol. Cell. Biol. 27, 2841–2847 PubMed PMC
Umeda N., Suzuki T., Yukawa M., Ohya Y., Shindo H., Watanabe K., Suzuki T. (2005) J. Biol. Chem. 280, 1613–1624 PubMed
Leidel S., Pedrioli P. G., Bucher T., Brost R., Costanzo M., Schmidt A., Aebersold R., Boone C., Hofmann K., Peter M. (2009) Nature 458, 228–232 PubMed
Huang B., Lu J., Byström A. S. (2008) RNA 14, 2183–2194 PubMed PMC
Noma A., Sakaguchi Y., Suzuki T. (2009) Nucleic Acids Res. 37, 1335–1352 PubMed PMC
Smíd O., Horáková E., Vilímová V., Hrdy I., Cammack R., Horváth A., Lukeš J., Tachezy J. (2006) J. Biol. Chem. 281, 28679–28686 PubMed
Poliak P., Van Hoewyk D., Oborník M., Zíková A., Stuart K. D., Tachezy J., Pilon M., Lukeš J. (2010) FEBS J. 277, 383–393 PubMed PMC
Simpson A. M., Suyama Y., Dewes H., Campbell D. A., Simpson L. (1989) Nucleic Acids Res. 17, 5427–5445 PubMed PMC
Wohlgamuth-Benedum J. M., Rubio M. A., Paris Z., Long S., Poliak P., Lukeš J., Alfonzo J. D. (2009) J. Biol. Chem. 284, 23947–23953 PubMed PMC
Vondrusková E., van den Burg J., Zíková A., Ernst N. L., Stuart K. D., Benne R., Lukeš J. (2005) J. Biol. Chem. 280, 2429–2438 PubMed
Jensen B. C., Kifer C. T., Brekken D. L., Randall A. C., Wang Q., Drees B. L., Parsons M. (2007) Mol. Biochem. Parasitol. 151, 28–40 PubMed PMC
Hashimi H., Čičová Z., Novotná L., Wen Y. Z., Lukeš J. (2009) RNA 15, 588–599 PubMed PMC
Hashimi H., Zíková A., Panigrahi A. K., Stuart K. D., Lukeš J. (2008) RNA 14, 970–980 PubMed PMC
Zíková A., Panigrahi A. K., Dalley R. A., Acestor N., Anupama A., Ogata Y., Myler P. J., Stuart K. (2008) Mol. Cell. Proteomics 7, 1286–1296 PubMed PMC
Panigrahi A. K., Zíková A., Dalley R. A., Acestor N., Ogata Y., Anupama A., Myler P. J., Stuart K. D. (2008) Mol. Cell. Proteomics 7, 534–545 PubMed
Long S., Jirku̇ M., Ayala F. J., Lukeš J. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 13468–13473 PubMed PMC
Panigrahi A. K., Schnaufer A., Carmean N., Igo R. P., Jr., Gygi S. P., Ernst N. L., Palazzo S. S., Weston D. S., Aebersold R., Salavati R., Stuart K. D. (2001) Mol. Cell. Biol. 21, 6833–6840 PubMed PMC
Gavin A. C., Bösche M., Krause R., Grandi P., Marzioch M., Bauer A., Schultz J., Rick J. M., Michon A. M., Cruciat C. M., Remor M., Höfert C., Schelder M., Brajenovic M., Ruffner H., Merino A., Klein K., Hudak M., Dickson D., Rudi T., Gnau V., Bauch A., Bastuck S., Huhse B., Leutwein C., Heurtier M. A., Copley R. R., Edelmann A., Querfurth E., Rybin V., Drewes G., Raida M., Bouwmeester T., Bork P., Seraphin B., Kuster B., Neubauer G., Superti-Furga G. (2002) Nature 415, 141–147 PubMed
Saas J., Ziegelbauer K., von Haeseler A., Fast B., Boshart M. (2000) J. Biol. Chem. 275, 2745–2755 PubMed
Crain P. F., Alfonzo J. D., Rozenski J., Kapushoc S. T., McCloskey J. A., Simpson L. (2002) RNA 8, 752–761 PubMed PMC
Mihara H., Kato S., Lacourciere G. M., Stadtman T. C., Kennedy R. A., Kurihara T., Tokumoto U., Takahashi Y., Esaki N. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 6679–6683 PubMed PMC
Bruske E. I., Sendfeld F., Schneider A. (2009) J. Biol. Chem. 284, 36491–36499 PubMed PMC
Besteiro S., Barrett M. P., Rivière L., Bringaud F. (2005) Trends Parasitol. 21, 185–191 PubMed
Johansson M. J., Esberg A., Huang B., Björk G. R., Byström A. S. (2008) Mol. Cell. Biol. 10, 3301–3312 PubMed PMC
Schlieker C. D., Van der Veen A. G., Damon J. R., Spooner E., Ploegh H. L. (2008) Proc. Natl. Acad. Sci. U.S.A. 47, 18255–18260 PubMed PMC
Zutz A., Gompf S., Schägger H., Tampé R. (2009) Biochim. Biophys. Acta 1787, 681–690 PubMed
Agris P. F., Söll D., Seno T. (1973) Biochemistry 12, 4331–4337 PubMed
Kamenski P., Kolesnikova O., Jubenot V., Entelis N., Krasheninnikov I. A., Martin R. P., Tarassov I. (2007) Mol. Cell 26, 625–637 PubMed
ZapE/Afg1 interacts with Oxa1 and its depletion causes a multifaceted phenotype
Fe-S cluster assembly in the supergroup Excavata