Human embryonic stem cells suffer from centrosomal amplification
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
20960514
DOI
10.1002/stem.549
Knihovny.cz E-resources
- MeSH
- Aneuploidy MeSH
- Cell Differentiation MeSH
- Cell Line MeSH
- Centrosome metabolism MeSH
- Chromosomal Instability * MeSH
- Cyclin-Dependent Kinase 2 genetics metabolism MeSH
- Embryonic Stem Cells pathology MeSH
- Aurora Kinases MeSH
- Humans MeSH
- Mitosis MeSH
- Protein Serine-Threonine Kinases genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cyclin-Dependent Kinase 2 MeSH
- Aurora Kinases MeSH
- Protein Serine-Threonine Kinases MeSH
Propagation of human embryonic stem cells (hESCs) in culture tends to alter karyotype, potentially limiting the prospective use of these cells in patients. The chromosomal instability of some malignancies is considered to be driven, at least in part, by centrosomal overamplification, perturbing balanced chromosome segregation. Here, we report, for the first time, that very high percentage of cultured hESCs has supernumerary centrosomes during mitosis. Supernumerary centrosomes were strictly associated with an undifferentiated hESC state and progressively disappeared on prolonged propagation in culture. Improved attachment to culture substratum and inhibition of CDK2 and Aurora A (key regulators of centrosomal metabolism) diminished the frequency of multicentrosomal mitoses. Thus, both attenuated cell attachment and deregulation of machinery controlling centrosome number contribute to centrosomal overamplification in hESCs. Linking the excessive number of centrosomes in mitoses to the ploidy indicated that both overduplication within a single cell cycle and mitotic failure contributed to generation of numerical centrosomal abnormalities in hESCs. Collectively, our data indicate that supernumerary centrosomes are a significant risk factor for chromosome instability in cultured hESCs and should be evaluated when new culture conditions are being implemented.
References provided by Crossref.org
The frequency and consequences of multipolar mitoses in undifferentiated embryonic stem cells
Melanoma cells influence the differentiation pattern of human epidermal keratinocytes
Cultivation-dependent plasticity of melanoma phenotype