Crystallization and crystallographic analysis of the Rhodococcus rhodochrous NCIMB 13064 DhaA mutant DhaA31 and its complex with 1,2,3-trichloropropane
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21393851
PubMed Central
PMC3053171
DOI
10.1107/s1744309111001254
PII: S1744309111001254
Knihovny.cz E-resources
- MeSH
- Bacterial Proteins chemistry genetics metabolism MeSH
- X-Ray Diffraction MeSH
- Hydrolases chemistry genetics metabolism MeSH
- Crystallization MeSH
- Molecular Sequence Data MeSH
- Propane analogs & derivatives chemistry metabolism MeSH
- Rhodococcus enzymology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 1,2,3-trichloropropane MeSH Browser
- Bacterial Proteins MeSH
- haloalkane dehalogenase MeSH Browser
- Hydrolases MeSH
- Propane MeSH
Haloalkane dehalogenases hydrolyze carbon-halogen bonds in a wide range of halogenated aliphatic compounds. The potential use of haloalkane dehalogenases in bioremediation applications has stimulated intensive investigation of these enzymes and their engineering. The mutant DhaA31 was constructed to degrade the anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. This strategy enhances activity towards TCP by decreasing the accessibility of the active site to water molecules, thereby promoting formation of the activated complex. The structure of DhaA31 will help in understanding the structure-function relationships involved in the improved dehalogenation of TCP. The mutant protein DhaA31 was crystallized by the sitting-drop vapour-diffusion technique and crystals of DhaA31 in complex with TCP were obtained using soaking experiments. Both crystals belonged to the triclinic space group P1. Diffraction data were collected to high resolution: to 1.31 Å for DhaA31 and to 1.26 Å for DhaA31 complexed with TCP.
See more in PubMed
Bosma, T., Kruizinga, E., De Bruin, E. J., Poelarends, G. J. & Janssen, D. B. (1999). Appl. Environ. Microbiol. 65, 4575–4581. PubMed PMC
Bradford, M. M. (1976). Anal. Biochem. 72, 248–254. PubMed
Chovancová, E., Kosinski, J., Bujnicki, J. M. & Damborský, J. (2007). Proteins, 67, 305–316. PubMed
Ducruix, A. & Giegé, R. (1999). Protein Crystallography: A Practical Approach, 2nd ed. Oxford: IRL Press.
Klvana, M., Pavlova, M., Koudelakova, T., Chaloupkova, R., Dvorak, P., Prokop, Z., Stsiapanava, A., Kuty, M., Kuta-Smatanova, I., Dohnalek, J., Kulhanek, P., Wade, R. C. & Damborsky, J. (2009). J. Mol. Biol. 392, 1339–1356. PubMed
Kulakova, A. N., Larkin, M. J. & Kulakov, L. A. (1997). Microbiology, 143, 109–115. PubMed
Matthews, B. W. (1968). J. Mol. Biol. 33, 491–497. PubMed
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst. D53, 240–255. PubMed
Newman, J., Peat, T. S., Richard, R., Kan, L., Swanson, P. E., Affholter, J. A., Holmes, I. H., Schindler, J. F., Unkefer, C. J. & Terwilliger, T. C. (1999). Biochemistry, 38, 16105–16114. PubMed
Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326. PubMed
Pavlova, M., Klvana, M., Prokop, Z., Chaloupkova, R., Banas, P., Otyepka, M., Wade, R. C., Tsuda, M., Nagata, Y. & Damborsky, J. (2009). Nature Chem. Biol. 5, 727–733. PubMed
Schindler, J. F., Naranjo, P. A., Honaberger, D. A., Chang, C.-H., Brainard, J. R., Vanderberg, L. A. & Unkefer, C. J. (1999). Biochemistry, 38, 5772–5778. PubMed
Stsiapanava, A., Dohnalek, J., Gavira, J. A., Kuty, M., Koudelakova, T., Damborsky, J. & Kuta Smatanova, I. (2010). Acta Cryst. D66, 962–969. PubMed
Teng, T.-Y. (1990). J. Appl. Cryst. 23, 387–391.
Vagin, A. & Teplyakov, A. (2010). Acta Cryst. D66, 22–25. PubMed