Antimycobacterial activity of salicylanilide benzenesulfonates
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
22222908
PubMed Central
PMC6268226
DOI
10.3390/molecules17010492
PII: molecules17010492
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents chemical synthesis chemistry pharmacology MeSH
- Benzenesulfonates chemical synthesis chemistry pharmacology MeSH
- Esterification MeSH
- Esters chemical synthesis chemistry pharmacology MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium drug effects MeSH
- Drug Design MeSH
- Salicylanilides chemical synthesis chemistry pharmacology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Benzenesulfonates MeSH
- Esters MeSH
- Salicylanilides MeSH
A series of eighteen novel esters of salicylanilides with benzenesulfonic acid were designed, synthesized and characterized by IR, ¹H-NMR and ¹³C-NMR. They were evaluated in vitro as potential antimycobacterial agents towards Mycobacterium tuberculosis, Mycobacterium avium and two strains of Mycobacterium kansasii. In general, the minimum inhibitory concentrations range from 1 to 500 µmol/L. The most active compound against M. tuberculosis was 4-chloro-2-(4-(trifluoromethyl)phenylcarbamoyl)-phenyl benzenesulfonate, with MIC of 1 µmol/L and towards M. kansasii its isomer 5-chloro-2-(4-(trifluoromethyl)phenylcarbamoyl)phenyl benzenesulfonate (MIC of 2-4 µmol/L). M. avium was the less susceptible strain. However, generally, salicylanilide benzenesulfonates did not surpass the activity of other salicylanilide esters with carboxylic acids.
See more in PubMed
WHO. 2011/2012 Tuberculosis Global Facts. [(accessed on 28 October 2011)]. Available online: http://www.who.int/tb/publications/2011/factsheet_tb_2011.pdf.
Vinsova J., Kratky M. Development of New MDR-Tuberculosis Drugs. 1st. Nova Science Publishers; New York, NY, USA: 2010.
Kratky M., Vinsova J. Advances in the Development of Antituberculotics Acting on Multidrug-Resistant Strains. Chem. Listy. 2010;104:998–1005.
Sugita A., Ogawa H., Azuma M., Muto S., Honjo A., Yanagawa H., Nishioka Y., Tani K., Itai A., Sone S. Antiallergic and anti-inflammatory effects of a novel IkB kinase b inhibitor, IMD-0354, in a mouse model of allergic inflammatio. Int. Arch. Allergy Immunol. 2009;148:186–198. doi: 10.1159/000161579. PubMed DOI
Brown M.E., Fitzner J.N., Stevens T., Chin W., Wright C.D., Boyce J.P. Salicylanilides: Selective inhibitors of interleukin-12p40 production. Bioorg.Med. Chem. 2008;16:8760–8764. doi: 10.1016/j.bmc.2008.07.024. PubMed DOI
Zhong G.X., Chen L.L., Li J., Hu W.X., Qi M.Y. Synthesis and anti-inflammatory-analgesic activity of 2′,4′-difluoro-3-(carbamoyl)biphenyl-4-yl benzoates. Chin. Chem. Lett. 2008;19:1419–1422. doi: 10.1016/j.cclet.2008.09.018. DOI
Calderone V., Coi A., Fiamingo F.L., Giorgi I., Leonardi M., Livi O., Martelli A., Martinotti E. Structural modifications of benzanilide derivatives, effective potassium channel openers. X. Eur. J. Med. Chem. 2006;41:1421–1429. doi: 10.1016/j.ejmech.2006.07.016. PubMed DOI
Liechti C., Séquin U., Bold G., Furet P., Meyer T., Traxler P. Salicylanilides as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. Eur. J. Med. Chem. 2004;39:11–26. doi: 10.1016/j.ejmech.2003.09.010. PubMed DOI
Zhu X.F., Wang J.S., Cai L.L., Zeng Y.X., Yang D. SUCI02 inhibits the erbB-2 tyrosine kinase receptor signaling pathway and arrests the cell cycle in G1 phase in breast cancer cells. Cancer Sci. 2006;97:84–89. doi: 10.1111/j.1349-7006.2006.00143.x. PubMed DOI PMC
Krátký M., Vinšová J. Antiviral Activity of Substituted Salicylanilides—A Review. Mini-Rev. Med. Chem. 2011;97:956–967. PubMed
Krátký M., Vinšová J. Salicylanilide Ester Prodrugs as Potential Antimicrobial Agents—A Review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI
Hamilton W.A. Mechanism of the Bacteriostatic Action of Tetrachlorosalicylanilide—A Membrane Active Antibacterial Compound. J. Gen. Microbiol. 1968;50:441–458. doi: 10.1099/00221287-50-3-441. PubMed DOI
Terada H., Goto S., Yamamoto K., Takeuchi I., Hamada Y., Miyake K. Structural requirements of salicylanilides for uncoupling activity in mitochondria: Quantitative analysis of structure-uncoupling relationships. Biochim.Biophys. Acta. 1988;936:504–512. doi: 10.1016/0005-2728(88)90027-8. PubMed DOI
Macielag M.J., Demers J.P., Fraga-Spano S.A., Hlasta D.J., Johnson S.G., Kanojia R.M., Russel R.K., Sui Z.H., Weidner-Wells M.A., Werblood H., et al. Substituted Salicylanilides as Inhibitors of Two-Component Regulatory Systems in Bacteria. J. Med. Chem. 1998;41:2939–2945. doi: 10.1021/jm9803572. PubMed DOI
Krátký M., Vinšová J., Buchta V., Horvati K., Bösze S., Stolaříková J. New amino acid esters of salicylanilides active against MDR-TB and other microbes. Eur. J. Med. Chem. 2010;45:6106–6113. doi: 10.1016/j.ejmech.2010.09.040. PubMed DOI
Glowienke S., Frieauff W., Allmendinger T., Martus H.J., Suter W., Mueller L. Structure–activity considerations and in vitro approaches to assess the genotoxicity of 19 methane-, benzene- and toluenesulfonic acid esters. Mutat.Res. 2005;581:23–34. doi: 10.1016/j.mrgentox.2004.10.004. PubMed DOI
Imramovský A., Vinšová J., Férriz J.M., Doležal R., Jampílek J., Kaustová J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg.Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI
Vinsova J., Imramovsky A., Buchta V., Ceckova M., Dolezal M., Staud F., Jampilek J., Kaustova J. Salicylanilide Acetates: Synthesis and Antibacterial Evaluation. Molecules. 2007;12:1–12. doi: 10.3390/12010001. PubMed DOI PMC
Imramovský A., Férriz J.M., Pauk K., Krátký M., Vinšová J. Synthetic route for the preparation of 2-hydroxy-N-[1-(2-hydroxyphenylamino)-1-oxoalkan-2-yl]benzamides. J. Comb. Chem. 2010;12:414–416. doi: 10.1021/cc900168s. PubMed DOI
Gwaltney S.L., Imade H.M., Li Q., Gehrke L., Credo R.B., Warner R.B., Lee J.Y., Kovar P., Frost D., Ng S.C., Sham H.L. Novel Sulfonate Derivatives: Potent Antimitotic Agents. Bioorg.Med. Chem. Lett. 2001;11:1671–1673. doi: 10.1016/S0960-894X(01)00279-7. PubMed DOI
Waisser K., Bureš O., Holý P., Kuneš J., Oswald R., Jirásková L., Pour M., Klimešová V., Kubicová L., Kaustová J. Relationship between the structure and antimycobacterial activity of substituted salicylanilides. Arch. Pharm. Pharm. Med. Chem. 2003;1:53–71. PubMed
Ferriz J.M., Vávrová K., Kunc F., Imramovský A., Stolaříková J., Vavříková E., Vinšová J. Salicylanilide carbamates: Antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg.Med. Chem. 2010;18:1054–1061. doi: 10.1016/j.bmc.2009.12.055. PubMed DOI
Kaustová J. Quantitative micromethod for drug susceptibility testing of mycobacteria in Šula´s medium. Klin.Microbiol. Inf. Lek. 1997;3:115–124.
Antibacterial activity of salicylanilide 4-(trifluoromethyl)-benzoates