Broad-spectrum antifungal-producing lactic acid bacteria and their application in fruit models
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Antifungal Agents metabolism MeSH
- DNA, Bacterial chemistry genetics MeSH
- Fungi drug effects growth & development MeSH
- Hydrogen-Ion Concentration MeSH
- Food Preservation methods MeSH
- Lactobacillus plantarum classification genetics isolation & purification metabolism MeSH
- Microbial Interactions MeSH
- Fruit microbiology MeSH
- Pediococcus classification genetics isolation & purification metabolism MeSH
- Food Microbiology MeSH
- Pyrus microbiology MeSH
- DNA, Ribosomal chemistry genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Prunus microbiology MeSH
- Temperature MeSH
- Vitis microbiology MeSH
- Weissella classification genetics isolation & purification metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antifungal Agents MeSH
- DNA, Bacterial MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 16S MeSH
A large-scale screen of some 7,000 presumptive lactic acid bacteria (LAB), isolated from animal, human, or plant origin, identified 1,149 isolates with inhibitory activity against the food-spoilage mould Penicillium expansum. In excess of 500 LAB isolates were subsequently identified to produce a broad spectrum of activity against P. expansum, Penicillium digitatum, Penicillium notatum, Penicillium roqueforti, Rhizopus stolonifer, Fusarium culmorum, Aspergillus fumigatus and Rhodotorula mucilaginosa. Partial 16S rRNA sequencing of 94 broad spectrum isolates revealed that the majority of antifungal producers were strains of Lactobacillus plantarum. The remaining population was composed of Weissella confusa and Pediococcus pentosaceous isolates. Characterization of six selected broad-spectrum antifungal LAB isolates revealed that antifungal activity is maximal at a temperature of 30 °C, a pH of 4.0 and is stable across a variety of salt concentrations. The antifungal compound(s) was shown to be neither proteinaceous nor volatile in nature. P. pentosaceous 54 was shown to have protective properties against P. expansum spoilage when applied in pear, plum and grape models, therefore representing an excellent candidate for food-related applications.
See more in PubMed
Appl Environ Microbiol. 2000 Sep;66(9):4084-90 PubMed
Anaerobe. 2011 Dec;17(6):267-72 PubMed
J Appl Microbiol. 2007 Dec;103(6):2622-8 PubMed
Int J Food Microbiol. 2008 Jul 31;125(3):274-8 PubMed
Int J Food Microbiol. 2008 Jan 15;121(1):112-5 PubMed
Folia Microbiol (Praha). 2012 Mar;57(2):99-105 PubMed
J Appl Microbiol. 2011 Aug;111(2):474-83 PubMed
Appl Environ Microbiol. 2007 Sep;73(17):5547-52 PubMed
Int J Food Microbiol. 2010 Apr 30;139(1-2):56-63 PubMed
Int J Syst Evol Microbiol. 2008 Sep;58(Pt 9):2013-7 PubMed
Int J Syst Evol Microbiol. 2005 Jan;55(Pt 1):35-40 PubMed
J Food Prot. 2010 Apr;73(4):758-62 PubMed
Appl Environ Microbiol. 2003 Dec;69(12):7554-7 PubMed
J Appl Microbiol. 2004;96(3):521-34 PubMed
Syst Appl Microbiol. 2009 Sep;32(6):438-48 PubMed
Int J Food Microbiol. 2010 Jun 30;141(1-2):116-21 PubMed
J Food Sci. 2010 Aug 1;75(6):M354-9 PubMed
Appl Environ Microbiol. 2002 Sep;68(9):4322-7 PubMed
Appl Environ Microbiol. 2001 Jan;67(1):1-5 PubMed
J Appl Microbiol. 2002;93(4):566-76 PubMed
PLoS One. 2012;7(1):e29452 PubMed
J Appl Microbiol. 2008 Mar;104(3):915-23 PubMed
Asia Pac J Clin Nutr. 2007;16 Suppl 1:95-101 PubMed
FEMS Microbiol Lett. 2003 Feb 14;219(1):129-35 PubMed
Int J Food Microbiol. 1996 Nov;33(1):85-102 PubMed
J Food Prot. 2010 Jun;73(6):1129-37 PubMed