Feeding High-Fat Diet Accelerates Development of Peripheral and Central Insulin Resistance and Inflammation and Worsens AD-like Pathology in APP/PS1 Mice

. 2023 Aug 23 ; 15 (17) : . [epub] 20230823

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37686722

Grantová podpora
20-00546S Czech Science Foundation
TN01000013 Technology Agency of the Czech Republic
RVO61388971, RVO67958523 Czech Academy of Sciences
LX22NP05104 EXCELES
CZ.02.2.69/18_053/0016940 European Regional Development Fund

Alzheimer's disease (AD) is a progressive brain disorder characterized by extracellular amyloid-β (Aβ) plaques, intracellular neurofibrillary tangles formed by hyperphosphorylated Tau protein and neuroinflammation. Previous research has shown that obesity and type 2 diabetes mellitus, underlined by insulin resistance (IR), are risk factors for neurodegenerative disorders. In this study, obesity-induced peripheral and central IR and inflammation were studied in relation to AD-like pathology in the brains and periphery of APP/PS1 mice, a model of Aβ pathology, fed a high-fat diet (HFD). APP/PS1 mice and their wild-type controls fed either a standard diet or HFD were characterized at the ages of 3, 6 and 10 months by metabolic parameters related to obesity via mass spectroscopy, nuclear magnetic resonance, immunoblotting and immunohistochemistry to quantify how obesity affected AD pathology. The HFD induced substantial peripheral IR leading to central IR. APP/PS1-fed HFD mice had more pronounced IR, glucose intolerance and liver steatosis than their WT controls. The HFD worsened Aβ pathology in the hippocampi of APP/PS1 mice and significantly supported both peripheral and central inflammation. This study reveals a deleterious effect of obesity-related mild peripheral inflammation and prediabetes on the development of Aβ and Tau pathology and neuroinflammation in APP/PS1 mice.

Zobrazit více v PubMed

Duong S., Patel T., Chang F. Dementia: What pharmacists need to know. Can. Pharm. J. 2017;150:118–129. doi: 10.1177/1715163517690745. PubMed DOI PMC

DeTure M.A., Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019;14:32. doi: 10.1186/s13024-019-0333-5. PubMed DOI PMC

Bloom G.S. Amyloid-beta and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71:505–508. doi: 10.1001/jamaneurol.2013.5847. PubMed DOI

Serrano-Pozo A., Mielke M.L., Gomez-Isla T., Betensky R.A., Growdon J.H., Frosch M.P., Hyman B.T. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am. J. Pathol. 2011;179:1373–1384. doi: 10.1016/j.ajpath.2011.05.047. PubMed DOI PMC

Zilberter Y., Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J. Neurosci. Res. 2017;95:2217–2235. doi: 10.1002/jnr.24064. PubMed DOI

Bagnol D., Al-Shamma H.A., Behan D., Whelan K., Grottick A.J. Diet-induced models of obesity (DIO) in rodents. Curr. Protoc. Neurosci. 2012;59:9–38. doi: 10.1002/0471142301.ns0938s59. PubMed DOI

Buettner R., Scholmerich J., Bollheimer L.C. High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity. 2007;15:798–808. doi: 10.1038/oby.2007.608. PubMed DOI

Youngren J.F., Paik J., Barnard R.J. Impaired insulin-receptor autophosphorylation is an early defect in fat-fed, insulin-resistant rats. J. Appl. Physiol. 2001;91:2240–2247. doi: 10.1152/jappl.2001.91.5.2240. PubMed DOI

Tabassum S., Misrani A., Yang L. Exploiting Common Aspects of Obesity and Alzheimer’s Disease. Front. Hum. Neurosci. 2020;14:602360. doi: 10.3389/fnhum.2020.602360. PubMed DOI PMC

Zhang D., Liu Z.X., Choi C.S., Tian L., Kibbey R., Dong J., Cline G.W., Wood P.A., Shulman G.I. Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc. Natl. Acad. Sci. USA. 2007;104:17075–17080. doi: 10.1073/pnas.0707060104. PubMed DOI PMC

Sripetchwandee J., Chattipakorn N., Chattipakorn S.C. Links Between Obesity-Induced Brain Insulin Resistance, Brain Mitochondrial Dysfunction, and Dementia. Front. Endocrinol. 2018;9:496. doi: 10.3389/fendo.2018.00496. PubMed DOI PMC

Boleti A.P.D.A., Cardoso P.H.D.O., Frihling B.E.F., e Silva P.S., de Moraes L.F.R., Migliolo L. Adipose tissue, systematic inflammation, and neurodegenerative diseases. Neural Regen. Res. 2023;18:38–46. doi: 10.4103/1673-5374.343891. PubMed DOI PMC

Jankowsky J.L., Slunt H.H., Ratovitski T., Jenkins N.A., Copeland N.G., Borchelt D.R. Co-expression of multiple transgenes in mouse CNS: A comparison of strategies. Biomol. Eng. 2001;17:157–165. doi: 10.1016/S1389-0344(01)00067-3. PubMed DOI

Guo Y., Ma X., Li P., Dong S., Huang X., Ren X., Yuan L. High-fat diet induced discrepant peripheral and central nervous systems insulin resistance in APPswe/PS1dE9 and wild-type C57BL/6J mice. Aging. 2020;13:1236–1250. doi: 10.18632/aging.202262. PubMed DOI PMC

Ma X., Guo Y., Xu J., Wang X., Dong S., Gao Y., Van Halm-Lutterodt N., Yuan L. Effects of distinct n-6 to n-3 polyunsaturated fatty acid ratios on insulin resistant and AD-like phenotypes in high-fat diets-fed APP/PS1 mice. Food Res. Int. 2022;162:112207. doi: 10.1016/j.foodres.2022.112207. PubMed DOI

Lee Y.H., Hsu H.C., Kao P.C., Shiao Y.J., Yeh S.H., Shie F.S., Hsu S.M., Yeh C.W., Liu H.K., Yang S.B., et al. Augmented Insulin and Leptin Resistance of High Fat Diet-Fed APPswe/PS1dE9 Transgenic Mice Exacerbate Obesity and Glycemic Dysregulation. Int. J. Mol. Sci. 2018;19:2333. doi: 10.3390/ijms19082333. PubMed DOI PMC

Ruiz H.H., Chi T., Shin A.C., Lindtner C., Hsieh W., Ehrlich M., Gandy S., Buettner C. Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer’s disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2016;12:851–861. doi: 10.1016/j.jalz.2016.01.008. PubMed DOI PMC

Bracko O., Vinarcsik L.K., Cruz Hernandez J.C., Ruiz-Uribe N.E., Haft-Javaherian M., Falkenhain K., Ramanauskaite E.M., Ali M., Mohapatra A., Swallow M.A., et al. High fat diet worsens Alzheimer’s disease-related behavioral abnormalities and neuropathology in APP/PS1 mice, but not by synergistically decreasing cerebral blood flow. Sci. Rep. 2020;10:9884. doi: 10.1038/s41598-020-65908-y. PubMed DOI PMC

Fan X., Liu B., Zhou J., Gu X., Zhou Y., Yang Y., Guo F., Wei X., Wang H., Si N., et al. High-Fat Diet Alleviates Neuroinflammation and Metabolic Disorders of APP/PS1 Mice and the Intervention with Chinese Medicine. Front. Aging Neurosci. 2021;13:658376. doi: 10.3389/fnagi.2021.658376. PubMed DOI PMC

Kacirova M., Zelezna B., Blazkova M., Holubova M., Popelova A., Kunes J., Sediva B., Maletinska L. Aging and high-fat diet feeding lead to peripheral insulin resistance and sex-dependent changes in brain of mouse model of tau pathology THY-Tau22. J. Neuroinflamm. 2021;18:141. doi: 10.1186/s12974-021-02190-3. PubMed DOI PMC

Leboucher A., Laurent C., Fernandez-Gomez F.J., Burnouf S., Troquier L., Eddarkaoui S., Demeyer D., Caillierez R., Zommer N., Vallez E., et al. Detrimental effects of diet-induced obesity on tau pathology are independent of insulin resistance in tau transgenic mice. Diabetes. 2013;62:1681–1688. doi: 10.2337/db12-0866. PubMed DOI PMC

Knight E.M., Martins I.V., Gumusgoz S., Allan S.M., Lawrence C.B. High-fat diet-induced memory impairment in triple-transgenic Alzheimer’s disease (3xTgAD) mice is independent of changes in amyloid and tau pathology. Neurobiol. Aging. 2014;35:1821–1832. doi: 10.1016/j.neurobiolaging.2014.02.010. PubMed DOI PMC

Matysková R., Maletínská L., Maixnerová J., Pirník Z., Kiss A., Zelezná B. Comparison of the obesity phenotypes related to monosodium glutamate effect on arcuate nucleus and/or the high fat diet feeding in C57BL/6 and NMRI mice. Physiol. Res. 2008;57:727–734. doi: 10.33549/physiolres.931274. PubMed DOI

Prazienkova V., Funda J., Pirnik Z., Karnosova A., Hruba L., Korinkova L., Neprasova B., Janovska P., Benzce M., Kadlecova M., et al. GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene. 2021;774:145427. doi: 10.1016/j.gene.2021.145427. PubMed DOI

Pacesova A., Holubova M., Hruba L., Strnadova V., Neprasova B., Pelantova H., Kuzma M., Zelezna B., Kunes J., Maletinska L. Age-related metabolic and neurodegenerative changes in SAMP8 mice. Aging. 2022;14:7300–7327. doi: 10.18632/aging.204284. PubMed DOI PMC

Holubova M., Hruba L., Popelova A., Bencze M., Prazienkova V., Gengler S., Kratochvilova H., Haluzik M., Zelezna B., Kunes J., et al. Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of beta-amyloid pathology. Neuropharmacology. 2019;144:377–387. doi: 10.1016/j.neuropharm.2018.11.002. PubMed DOI

Franklin K., Paxinos G. The Mouse Brain in Stereotaxic Coordinates. Academic Press; Cambridge, MA, USA: 2008.

Strnad S., Vrkoslav V., Klimsova Z., Zemenova J., Cvacka J., Maletinska L., Sykora D. Application of matrix-assisted laser desorption/ionization mass spectrometry imaging in combination with LC-MS in pharmacokinetic study of metformin. Bioanalysis. 2018;10:71–81. doi: 10.4155/bio-2017-0190. PubMed DOI

Strnad S., PraZienkova V., Holubova M., Sykora D., Cvacka J., Maletinska L., Zelezna B., Kunes J., Vrkoslav V. Mass spectrometry imaging of free-floating brain sections detects pathological lipid distribution in a mouse model of Alzheimer’s-like pathology. Analyst. 2020;145:4595–4605. doi: 10.1039/D0AN00592D. PubMed DOI

Korinkova L., Holubova M., Neprasova B., Hruba L., Prazienkova V., Bencze M., Haluzik M., Kunes J., Maletinska L., Zelezna B. Synergistic effect of leptin and lipidized PrRP on metabolic pathways in ob/ob mice. J. Mol. Endocrinol. 2020;64:77–90. doi: 10.1530/JME-19-0188. PubMed DOI

Kleiner D.E., Brunt E.M., Van Natta M., Behling C., Contos M.J., Cummings O.W., Ferrell L.D., Liu Y.C., Torbenson M.S., Unalp-Arida A., et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321. doi: 10.1002/hep.20701. PubMed DOI

Lofgren L., Forsberg G.B., Stahlman M. The BUME method: A new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci. Rep. 2016;6:27688. doi: 10.1038/srep27688. PubMed DOI PMC

Pelantova H., Buganova M., Anyz J., Zelezna B., Maletinska L., Novak D., Haluzik M., Kuzma M. Strategy for NMR metabolomic analysis of urine in mouse models of obesity—From sample collection to interpretation of acquired data. J. Pharm. Biomed. Anal. 2015;115:225–235. doi: 10.1016/j.jpba.2015.06.036. PubMed DOI

Wishart D.S., Feunang Y.D., Marcu A., Guo A.C., Liang K., Vazquez-Fresno R., Sajed T., Johnson D., Li C., Karu N., et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018;46:D608–D617. doi: 10.1093/nar/gkx1089. PubMed DOI PMC

Lansang M.C., Williams G.H., Carroll J.S. Correlation between the glucose clamp technique and the homeostasis model assessment in hypertension. Am. J. Hypertens. 2001;14:51–53. doi: 10.1016/S0895-7061(00)01229-2. PubMed DOI

Chong J., Wishart D.S., Xia J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019;68:e86. doi: 10.1002/cpbi.86. PubMed DOI

Strnad Š., Pražienková V., Sýkora D., Cvačka J., Maletínská L., Popelová A., Vrkoslav V. The use of 1,5-diaminonaphthalene for matrix-assisted laser desorption/ionization mass spectrometry imaging of brain in neurodegenerative disorders. Talanta. 2019;201:364–372. doi: 10.1016/j.talanta.2019.03.117. PubMed DOI

De Felice F.G., Lourenco M.V., Ferreira S.T. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimer’s Dement. J. Alzheimer’s Assoc. 2014;10:S26–S32. doi: 10.1016/j.jalz.2013.12.004. PubMed DOI

Clee S.M., Attie A.D. The genetic landscape of type 2 diabetes in mice. Endocr. Rev. 2007;28:48–83. doi: 10.1210/er.2006-0035. PubMed DOI

Ramos-Rodriguez J.J., Ortiz-Barajas O., Gamero-Carrasco C., de la Rosa P.R., Infante-Garcia C., Zopeque-Garcia N., Lechuga-Sancho A.M., Garcia-Alloza M. Prediabetes-induced vascular alterations exacerbate central pathology in APPswe/PS1dE9 mice. Psychoneuroendocrinology. 2014;48:123–135. doi: 10.1016/j.psyneuen.2014.06.005. PubMed DOI

Lechuga-Sancho A.M., Arroba A.I., Frago L.M., Paneda C., Garcia-Caceres C., Delgado Rubin de Celix A., Argente J., Chowen J.A. Activation of the intrinsic cell death pathway, increased apoptosis and modulation of astrocytes in the cerebellum of diabetic rats. Neurobiol. Dis. 2006;23:290–299. doi: 10.1016/j.nbd.2006.03.001. PubMed DOI

Eder K., Gessner D.K., Ringseis R. Fibroblast growth factor 21 in dairy cows: Current knowledge and potential relevance. J. Anim. Sci. Biotechnol. 2021;12:97. doi: 10.1186/s40104-021-00621-y. PubMed DOI PMC

Misiak B., Leszek J., Kiejna A. Metabolic syndrome, mild cognitive impairment and Alzheimer’s disease—The emerging role of systemic low-grade inflammation and adiposity. Brain Res. Bull. 2012;89:144–149. doi: 10.1016/j.brainresbull.2012.08.003. PubMed DOI

Festa A., Hanley A.J., Tracy R.P., D’Agostino R., Jr., Haffner S.M. Inflammation in the prediabetic state is related to increased insulin resistance rather than decreased insulin secretion. Circulation. 2003;108:1822–1830. doi: 10.1161/01.CIR.0000091339.70120.53. PubMed DOI

Salek R.M., Maguire M.L., Bentley E., Rubtsov D.V., Hough T., Cheeseman M., Nunez D., Sweatman B.C., Haselden J.N., Cox R.D., et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol. Genomics. 2007;29:99–108. doi: 10.1152/physiolgenomics.00194.2006. PubMed DOI

Pelantova H., Buganova M., Holubova M., Sediva B., Zemenova J., Sykora D., Kavalkova P., Haluzik M., Zelezna B., Maletinska L., et al. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination. Mol. Cell Endocrinol. 2016;431:88–100. doi: 10.1016/j.mce.2016.05.003. PubMed DOI

Cermakova M., Pelantova H., Neprasova B., Sediva B., Maletinska L., Kunes J., Tomasova P., Zelezna B., Kuzma M. Metabolomic Study of Obesity and Its Treatment with Palmitoylated Prolactin-Releasing Peptide Analog in Spontaneously Hypertensive and Normotensive Rats. J. Proteome Res. 2019;18:1735–1750. doi: 10.1021/acs.jproteome.8b00964. PubMed DOI

Lees H.J., Swann J.R., Poucher S., Holmes E., Wilson I.D., Nicholson J.K. Obesity and Cage Environment Modulate Metabolism in the Zucker Rat: A Multiple Biological Matrix Approach to Characterizing Metabolic Phenomena. J. Proteome Res. 2019;18:2160–2174. doi: 10.1021/acs.jproteome.9b00040. PubMed DOI

Schofield Z., Reed M.A., Newsome P.N., Adams D.H., Gunther U.L., Lalor P.F. Changes in human hepatic metabolism in steatosis and cirrhosis. World J. Gastroenterol. 2017;23:2685–2695. doi: 10.3748/wjg.v23.i15.2685. PubMed DOI PMC

Xie Z., Li H., Wang K., Lin J., Wang Q., Zhao G., Jia W., Zhang Q. Analysis of transcriptome and metabolome profiles alterations in fatty liver induced by high-fat diet in rat. Metab. Clin. Exp. 2010;59:554–560. doi: 10.1016/j.metabol.2009.08.022. PubMed DOI

Kim D.G., Krenz A., Toussaint L.E., Maurer K.J., Robinson S.A., Yan A., Torres L., Bynoe M.S. Non-alcoholic fatty liver disease induces signs of Alzheimer’s disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model. J. Neuroinflamm. 2016;13:1. doi: 10.1186/s12974-015-0467-5. PubMed DOI PMC

Kim G.A., Oh C.H., Kim J.W., Jeong S.J., Oh I.H., Lee J.S., Park K.C., Shim J.J. Association between non-alcoholic fatty liver disease and the risk of dementia: A nationwide cohort study. Liver Int. 2022;42:1027–1036. doi: 10.1111/liv.15244. PubMed DOI

Estrada L.D., Ahumada P., Cabrera D., Arab J.P. Liver Dysfunction as a Novel Player in Alzheimer’s Progression: Looking Outside the Brain. Front. Aging Neurosci. 2019;11:174. doi: 10.3389/fnagi.2019.00174. PubMed DOI PMC

Huang X., Liu G., Guo J., Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018;14:1483–1496. doi: 10.7150/ijbs.27173. PubMed DOI PMC

Americo-Da-Silva L., Aguilera J., Quinteros-Waltemath O., Sanchez-Aguilera P., Russell J., Cadagan C., Meneses-Valdes R., Sanchez G., Estrada M., Jorquera G., et al. Activation of the NLRP3 Inflammasome Increases the IL-1beta Level and Decreases GLUT4 Translocation in Skeletal Muscle during Insulin Resistance. Int. J. Mol. Sci. 2021;22:10212. doi: 10.3390/ijms221910212. PubMed DOI PMC

Abel E.D., Peroni O., Kim J.K., Kim Y.B., Boss O., Hadro E., Minnemann T., Shulman G.I., Kahn B.B. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409:729–733. doi: 10.1038/35055575. PubMed DOI

Favaretto F., Milan G., Collin G.B., Marshall J.D., Stasi F., Maffei P., Vettor R., Naggert J.K. GLUT4 defects in adipose tissue are early signs of metabolic alterations in Alms1GT/GT, a mouse model for obesity and insulin resistance. PLoS ONE. 2014;9:e109540. doi: 10.1371/journal.pone.0109540. PubMed DOI PMC

Gaster M., Staehr P., Beck-Nielsen H., Schroder H.D., Handberg A. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: Is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes. 2001;50:1324–1329. doi: 10.2337/diabetes.50.6.1324. PubMed DOI

Seraphim P.M., Nunes M.T., Machado U.F. GLUT4 protein expression in obese and lean 12-month-old rats: Insights from different types of data analysis. Braz. J. Med. Biol. Res. 2001;34:1353–1362. doi: 10.1590/S0100-879X2001001000018. PubMed DOI

Nelson V.L., Jiang Y.P., Dickman K.G., Ballou L.M., Lin R.Z. Adipose tissue insulin resistance due to loss of PI3K p110alpha leads to decreased energy expenditure and obesity. Am. J. Physiol. Endocrinol. Metab. 2014;306:E1205–E1216. doi: 10.1152/ajpendo.00625.2013. PubMed DOI PMC

Kruszynska Y.T., Worrall D.S., Ofrecio J., Frias J.P., Macaraeg G., Olefsky J.M. Fatty acid-induced insulin resistance: Decreased muscle PI3K activation but unchanged Akt phosphorylation. J. Clin. Endocrinol. Metab. 2002;87:226–234. doi: 10.1210/jcem.87.1.8187. PubMed DOI

Maletinska L., Nagelova V., Ticha A., Zemenova J., Pirnik Z., Holubova M., Spolcova A., Mikulaskova B., Blechova M., Sykora D., et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obes. 2015;39:986–993. doi: 10.1038/ijo.2015.28. PubMed DOI

Kimura A., Ohmichi M., Tasaka K., Kanda Y., Ikegami H., Hayakawa J., Hisamoto K., Morishige K., Hinuma S., Kurachi H., et al. Prolactin-releasing peptide activation of the prolactin promoter is differentially mediated by extracellular signal-regulated protein kinase and c-Jun N-terminal protein kinase. J. Biol. Chem. 2000;275:3667–3674. doi: 10.1074/jbc.275.5.3667. PubMed DOI

Aso E., Semakova J., Joda L., Semak V., Halbaut L., Calpena A., Escolano C., Perales J.C., Ferrer I. Triheptanoin supplementation to ketogenic diet curbs cognitive impairment in APP/PS1 mice used as a model of familial Alzheimer’s disease. Curr. Alzheimer Res. 2013;10:290–297. doi: 10.2174/15672050112099990128. PubMed DOI

Beckett T.L., Studzinski C.M., Keller J.N., Paul Murphy M., Niedowicz D.M. A ketogenic diet improves motor performance but does not affect beta-amyloid levels in a mouse model of Alzheimer’s disease. Brain Res. 2013;1505:61–67. doi: 10.1016/j.brainres.2013.01.046. PubMed DOI PMC

Julien C., Tremblay C., Phivilay A., Berthiaume L., Emond V., Julien P., Calon F. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol. Aging. 2010;31:1516–1531. doi: 10.1016/j.neurobiolaging.2008.08.022. PubMed DOI

Selkoe D.J., Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016;8:595–608. doi: 10.15252/emmm.201606210. PubMed DOI PMC

Chen Y., Zhao S., Fan Z., Li Z., Zhu Y., Shen T., Li K., Yan Y., Tian J., Liu Z., et al. Metformin attenuates plaque-associated tau pathology and reduces amyloid-beta burden in APP/PS1 mice. Alzheimer’s Res. Ther. 2021;13:40. doi: 10.1186/s13195-020-00761-9. PubMed DOI PMC

Chabrier M.A., Cheng D., Castello N.A., Green K.N., LaFerla F.M. Synergistic effects of amyloid-beta and wild-type human tau on dendritic spine loss in a floxed double transgenic model of Alzheimer’s disease. Neurobiol. Dis. 2014;64:107–117. doi: 10.1016/j.nbd.2014.01.007. PubMed DOI PMC

Roberson E.D., Scearce-Levie K., Palop J.J., Yan F., Cheng I.H., Wu T., Gerstein H., Yu G.Q., Mucke L. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science. 2007;316:750–754. doi: 10.1126/science.1141736. PubMed DOI

Jin M., Shepardson N., Yang T., Chen G., Walsh D., Selkoe D.J. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. USA. 2011;108:5819–5824. doi: 10.1073/pnas.1017033108. PubMed DOI PMC

Scott Bitner R. Cyclic AMP response element-binding protein (CREB) phosphorylation: A mechanistic marker in the development of memory enhancing Alzheimer’s disease therapeutics. Biochem. Pharmacol. 2012;83:705–714. doi: 10.1016/j.bcp.2011.11.009. PubMed DOI

Lindqvist A., Mohapel P., Bouter B., Frielingsdorf H., Pizzo D., Brundin P., Erlanson-Albertsson C. High-fat diet impairs hippocampal neurogenesis in male rats. Eur. J. Neurol. 2006;13:1385–1388. doi: 10.1111/j.1468-1331.2006.01500.x. PubMed DOI

Bracke A., Domanska G., Bracke K., Harzsch S., van den Brandt J., Broker B., von Bohlen Und Halbach O. Obesity Impairs Mobility and Adult Hippocampal Neurogenesis. J Exp. Neurosci. 2019;13:1179069519883580. doi: 10.1177/1179069519883580. PubMed DOI PMC

Rupp N.J., Wegenast-Braun B.M., Radde R., Calhoun M.E., Jucker M. Early onset amyloid lesions lead to severe neuritic abnormalities and local, but not global neuron loss in APPPS1 transgenic mice. Neurobiol. Aging. 2011;32:2324.e1–2324.e6. doi: 10.1016/j.neurobiolaging.2010.08.014. PubMed DOI

Crispino M., Trinchese G., Penna E., Cimmino F., Catapano A., Villano I., Perrone-Capano C., Mollica M.P. Interplay between Peripheral and Central Inflammation in Obesity-Promoted Disorders: The Impact on Synaptic Mitochondrial Functions. Int. J. Mol. Sci. 2020;21:5964. doi: 10.3390/ijms21175964. PubMed DOI PMC

Arnold S.E., Lucki I., Brookshire B.R., Carlson G.C., Browne C.A., Kazi H., Bang S., Choi B.R., Chen Y., McMullen M.F., et al. High fat diet produces brain insulin resistance, synaptodendritic abnormalities and altered behavior in mice. Neurobiol. Dis. 2014;67:79–87. doi: 10.1016/j.nbd.2014.03.011. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...