Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
23288436
PubMed Central
PMC3705011
DOI
10.1007/s10278-012-9561-8
Knihovny.cz E-resources
- MeSH
- Algorithms MeSH
- Anisotropy MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Magnetic Resonance Imaging methods MeSH
- Brain Mapping methods MeSH
- Brain anatomy & histology MeSH
- Image Processing, Computer-Assisted methods MeSH
- Reference Values MeSH
- Reproducibility of Results MeSH
- Aged MeSH
- Software MeSH
- Imaging, Three-Dimensional methods MeSH
- Check Tag
- Humans MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this work, we propose a new approach for three-dimensional registration of MR fractional anisotropy images with T1-weighted anatomy images of human brain. From the clinical point of view, this accurate coregistration allows precise detection of nerve fibers that is essential in neuroscience. A template matching algorithm combined with normalized cross-correlation was used for this registration task. To show the suitability of the proposed method, it was compared with the normalized mutual information-based B-spline registration provided by the Elastix software library, considered a reference method. We also propose a general framework for the evaluation of robustness and reliability of both registration methods. Both registration methods were tested by four evaluation criteria on a dataset consisting of 74 healthy subjects. The template matching algorithm has shown more reliable results than the reference method in registration of the MR fractional anisotropy and T1 anatomy image data. Significant differences were observed in the regions splenium of corpus callosum and genu of corpus callosum, considered very important areas of brain connectivity. We demonstrate that, in this registration task, the currently used mutual information-based parametric registration can be replaced by more accurate local template matching utilizing the normalized cross-correlation similarity measure.
See more in PubMed
Sullivan EV, Pfefferbaum A. Neuroradiological characterization of normal adult ageing. Br J Radiol. 2007;80(Spec No 2):99–108. doi: 10.1259/bjr/22893432. PubMed DOI
Grieve SM, Williams LM, Paul RH, Clark CR, Gordon E. Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study. Am J Neuroradiol. 2007;28(2):226–235. PubMed PMC
Sherbondy A, Akers D, Mackenzie R, Dougherty R, Wandell B. Exploring connectivity of the brain’s white matter with dynamic queries. IEEE Trans Vis Comput Graph. 2005;11(4):419–430. doi: 10.1109/TVCG.2005.59. PubMed DOI
Naik M, Lundervold A, Nygaard H, Geitung JT. Diffusion tensor imaging in dementia patients with frontal lobe symptoms. Acta Radiol. 2010;51(6):662–668. doi: 10.3109/02841851003709870. PubMed DOI
Archip N, Clatz O, Whalen S, Kacher D, Fedorov A, Kot A, Chrisochoides N, Jolesz F, Golby A, Black PM, Warfield SK. Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. NeuroImage. 2007;35(2):609–624. doi: 10.1016/j.neuroimage.2006.11.060. PubMed DOI PMC
Kinoshita M, Hashimoto N, Goto T, Kagawa N, Kishima H, Izumoto S, Tanaka H, Fujita N, Yoshimine T. Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant brain tumors. NeuroImage. 2008;43(1):29–35. doi: 10.1016/j.neuroimage.2008.06.041. PubMed DOI
Lee AD, Lepore N, Barysheva M, Chou Y, Brun C, Madsen, SK, McMahon K, de Zubicaray GI, Wright MJ, Toga AW, Thompson PM: Gene effects mapped using fractional and geodesic anisotropy in diffusion tensor images of 92 monozygotic and dizygotic twins. In: Alexander D, Gee J, Whitaker R Eds. Proceedings of the CDMRI’08: Workshop on Computational Diffusion MRI, MICCAI Workshop on Computational Diffusion MRI, New York, United States. University of Pennsylvania 31–40, 2008
Suárez E, Westin CF, Rovaris E, Ruiz-Alzola J: Nonrigid registration using regularized matching weighted by local structure. In: Proceeding of the MICCAI 2002 2489:581–589, 2002
Basser P, Mattiello J, Le Bihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259–267. doi: 10.1016/S0006-3495(94)80775-1. PubMed DOI PMC
Hagmann P, Jonasson L, Maeder P, Thiran JP, van Wedeen J, Meuli R. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics. 2006;26:205–223. doi: 10.1148/rg.26si065510. PubMed DOI
Hodneland E, Ystad MA, Haasz J, Munthe-Kaas AZ, Lundervold A: Automated workflow for spatial alignment of multimodal MR image acquisitions in a longitudinal study of cognitive aging. In: ASM’10 Proceedings of the 4th International Conference on Applied Mathematics, Simulation, Modelling 2010. Wisconsin, USA, WSEAS Press, 264–269, 2010
Bozzali M, Parker GJ, Serra L, Embleton K, Gili T, Perri R, Caltagirone C, Cercignani M. Anatomical connectivity mapping: a new tool to assess brain disconnection in Alzheimer’s disease. NeuroImage. 2011;54(3):2045–2051. doi: 10.1016/j.neuroimage.2010.08.069. PubMed DOI
Li Y, Verma R. Multichannel image registration by feature-based information fusion. IEEE Trans Med Imaging. 2011;30(3):707–720. doi: 10.1109/TMI.2010.2093908. PubMed DOI
Walimuni IS, Abid H, Hasan KM. A computational framework to quantify tissue microstructural integrity using conventional MRI macrostructural volumetry. Comput Biol Med. 2010;41(12):1073–1081. doi: 10.1016/j.compbiomed.2010.10.009. PubMed DOI
Jahanshad N, Lee AD, Barysheva M, McMahon KL, de Zubicaray GI, Martin NG, Wright MJ, Toga AW, Thompson PM. Genetic influences on brain asymmetry: a DTI study of 374 twins and siblings. NeuroImage. 2010;52(2):455–469. doi: 10.1016/j.neuroimage.2010.04.236. PubMed DOI PMC
Chiang MC, Leow AD, Klunder AD, Dutton RA, Barysheva M, Rose SE, McMahon KL, de Zubicaray GI, Toga AW, Thompson PM. Fluid registration of diffusion tensor images using information theory. IEEE Trans Med Imaging. 2008;27(4):442–456. doi: 10.1109/TMI.2007.907326. PubMed DOI PMC
Jin Y, Shi Y, Jahanshad N, Aganj I, Sapiro G, Toga AW, Thompson PM: 3D elastic registration improves HARDI-derived fiber alignment and automated tract clustering. In: Proceeding of the Biomedical Imaging: Form Nano to Macro, 2011 IEEE International Symposium on, 822–826, 2011
Ibanez L, Schroeder W, Ng L, Cates J: ITK Software Guide Kitware. Inc., 2005
Klein S, Staring M, Murphy K, Viergever MA, Pluim JP. Elastix: a toolbox for intensity based medical image registration. IEEE Trans Med Imaging. 2010;29(1):196–205. doi: 10.1109/TMI.2009.2035616. PubMed DOI
Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23:208–219. doi: 10.1016/j.neuroimage.2004.07.051. PubMed DOI
Jan J. Medical image processing, reconstruction and restoration—concepts and methods. Boca Raton: CRC–Taylor and Francis; 2005.
Christensen GE, Kuhl JG, Grabowski TJ, Pirwani IA, Vannier MW, Allen JS, Damasio H: Introduction to the non-rigid image registration evaluation project (NIREP). In: Proceedings of SPIE, WBIR 2006, 128–135, 2006
Ystad M, Hodneland E, Adolfsdottir S, Haasz J, Lundervold AJ, Eichele T, Lundervold A. Cortico-stricetal connectivity and cognition in normal aging: a combined DTI and resting state fMRI study. NeuroImage. 2011;55(1):24–31. doi: 10.1016/j.neuroimage.2010.11.016. PubMed DOI
Ystad M, Eichele T, Lundervold AJ, Lundervold A. Subcortical functional connectivity and verbal episodic memory in healthy elderly—a resting state fMRI study. NeuroImage. 2010;52(1):379–388. doi: 10.1016/j.neuroimage.2010.03.062. PubMed DOI
Thirion JP. Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal. 1998;9:243–260. doi: 10.1016/S1361-8415(98)80022-4. PubMed DOI
Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31(3):968–980. doi: 10.1016/j.neuroimage.2006.01.021. PubMed DOI
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–355. doi: 10.1016/S0896-6273(02)00569-X. PubMed DOI
Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B. Hybrid approach to the skull-stripping problem in MRI. NeuroImage. 2004;22(3):1160–1175. doi: 10.1016/j.neuroimage.2004.03.032. PubMed DOI
Windyga PS. Fast impulsive noise removal. IEEE Trans Image Proc. 2001;10(1):173–179. doi: 10.1109/83.892455. PubMed DOI
Modersitzki J: Numerical Methods for Image Registration. Oxford: Oxford University Press, 2004
Nielsen M, Florack L, Deriche R: Regularization and scale space. INRIA Tech. Rep. RR-2352, September 1994
Sun H, Yushkevich PA, Zhang H, Cook PA, Duda JT, Simon TJ, Gee JC. Shape-based normalization of the corpus callosum for DTI connectivity analysis. IEEE Trans Med Imaging. 2007;26(9):1166–1178. doi: 10.1109/TMI.2007.900322. PubMed DOI
Anderson RF, Kirtzic JS, Daescu O: Applying parallel design techniques to template matching with GPUs. in: Jose M, Laginha M, Palma MD, Osni M, Joao CL Eds. Proceedings of the 9th international conference on high performance computing for computational science (VECPAR'10). Berlin/Heidelberg: Springer, 2010, pp 456-468
Bican J, Flusser J. 3D rigid registration by cylindrical phase correlation method. Pattern Recognit Lett. 2009;30(10):914–921. doi: 10.1016/j.patrec.2009.03.015. DOI