Oximes: inhibitors of human recombinant acetylcholinesterase. A structure-activity relationship (SAR) study
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
23959117
PubMed Central
PMC3759941
DOI
10.3390/ijms140816882
PII: ijms140816882
Knihovny.cz E-resources
- MeSH
- Acetylcholinesterase chemistry MeSH
- Cholinesterase Inhibitors chemistry MeSH
- Catalytic Domain MeSH
- Humans MeSH
- Oximes chemistry MeSH
- Molecular Docking Simulation MeSH
- Protein Binding MeSH
- Hydrogen Bonding MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Oximes MeSH
Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring.
See more in PubMed
Wilson I.B., Ginsburg S. A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim. Biophys. Acta. 1955;18:168–170. PubMed
Wilson I.B., Ginsburg S. Reactivation of acetylcholinesterase inhibited by alkylphosphates. Arch. Biochem. Biophys. 1955;54:569–571. PubMed
Childs A.F., Davies D.R., Green A.L., Rutland J.P. The reactivation by oximes and hydroxamic acids of cholinesterase inhibited by organo-phosphorus compounds. Br. J. Pharmacol. Chemother. 1955;10:462–465. PubMed PMC
Bajgar J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. PubMed
Macllwain C. Study proves Iraq used nerve gas. Nature. 1993;363:3. PubMed
Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus compounds as chemical warfare agents: A review. J. Braz. Chem. Soc. 2009;20:407–428.
Nagao M., Takatori T., Matsuda Y., Nakajima M., Iwase H., Iwadate K. Definitive evidence for the acute sarin poisoning diagnosis in the Tokyo subway. Toxicol. Appl. Pharmacol. 1997;144:198–203. PubMed
Jokanovic M., Stojiljkovic M.P. Current understanding of the application of pyridinium oximes as cholinesterase reactivators in treatment of organophosphate poisoning. Eur. J. Pharmacol. 2006;553:10–17. PubMed
Lorke D.E., Kalasz H., Petroianu G.A., Tekes K. Entry of oximes into the brain: A review. Curr. Med. Chem. 2008;15:743–753. PubMed
Karasova J.Z., Pohanka M., Musilek K., Zemek F., Kuca K. Passive diffusion of acetylcholinesterase oxime reactivators through the blood-brain barrier: Influence of molecular structure. Toxicol. in Vitro. 2010;24:1838–1844. PubMed
Palin R., Clark J.K., Cowley P., Muir A.W., Pow E., Prosser A.B., Taylor R., Zhang M.Q. Novel piperidinium and pyridinium agents as water-soluble acetylcholinesterase inhibitors for the reversal of neuromuscular blockade. Bioorg. Med. Chem. Lett. 2002;12:2569–2572. PubMed
Petrova I., Bielavsky J. An overview of the syntheses of cholinesterase reactivators from 1980 to 1992. Mil. Med. Sci. Lett. 2001;70:63–73.
Sepsova V., Karasova J., Zemek F., Bennion B.J., Kuca K. Oximes as inhibitors of acetylcholinesterase—A structure-activity relationship (SAR) study. Mil. Med. Sci. Lett. 2011;80:178–186. PubMed PMC
Oh K.A., Park N.J., Park N.S., Kuca K., Jun D., Jung Y.S. Reactivation of DFP- and paraoxon-inhibited acetylcholinesterases by pyridinium oximes. Chem. Biol. Interact. 2008;175:365–367. PubMed
Kuca K., Kassa J. A comparison of the ability of a new bispyridinium oxime-1-(4- hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide and currently used oximes to reactivate nerve agent-inhibited rat brain acetylcholinesterase by in vitro methods. J. Enzyme Inhib. Med. Chem. 2003;18:529–535. PubMed
Musilek K., Dolezal M., Gunn-Moore F., Kuca K. Design, evaluation and structure-activity relationship studies of the AChE reactivators against organophosphorus pesticides. Med. Res. Rev. 2011;31:548–575. PubMed
Kassa J., Kuca K., Bartosova L., Kunesova G. The development of new structural analogues of oximes for the antidotal treatment of poisoning by nerve agents and the comparison of their reactivating and therapeutic efficacy with currently available oximes. Curr. Org. Chem. 2007;11:267–283.
Jin G.Y., He X.C., Zhang H.Y., Bai D.L. Synthesis of alkylene-linked dieters of (−)-huperzine A. Chin. Chem. Lett. 2002;13:23–26.
Kassa J., Jun D., Kuca K., Bajgar J. Comparison of reactivating and therapeutic efficacy of two salts of the oxime HI-6 against tabun, soman and cyclosarin in rats. Basic Clin. Pharmacol. Toxicol. 2007;101:328–332. PubMed
Musilek K., Holas O., Hambalek J., Kuca K., Jun D., Dohnal V., Dolezal M. Synthesis of bispyridinium compounds bearing propane linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. Lett. Org. Chem. 2006;3:831–835. PubMed
DeLano W.L. The PyMOL Molecular Graphics System, Version 1.3. Schrödinger, LLC; 2010.
Bolea I., Juarez-Jimenez J., de Los Rios C., Chioua M., Pouplana R., Luque F.J., Unzeta M., Marco-Contelles J., Samadi A. Synthesis, biological evaluation, and molecular modeling of donepezil and N-[(5-(benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine hybrids as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem. 2011;54:8251–8270. PubMed
Musilek K., Komloova M., Holas O., Hrabinova M., Pohanka M., Dohnal V., Nachon F., Dolezal M., Kuca K. Preparation and in vitro screening of symmetrical bis-isoquinolinium cholinesterase inhibitors bearing various connecting linkage—Implications for early Myasthenia gravis treatment. Eur. J. Med. Chem. 2011;46:811–818. PubMed
Komloova M., Musilek K., Horova A., Holas O., Dohnal V., Gunn-Moore F., Kuca K. Preparation, in vitro screening and molecular modelling of symmetrical bis-quinolinium cholinesterase inhibitors-implications for early Myasthenia gravis treatment. Bioorg. Med. Chem. Lett. 2011;21:2505–2509. PubMed
Musilek K., Holas O., Kuca K., Jun D., Dohnal V., Opletalova V., Dolezal M. Novel series of bispyridinium compounds bearing a (Z)-but-2-ene linker—Synthesis and evaluation of their reactivation activity against tabun and paraoxon-inhibited acetylcholinesterase. Bioorg. Med. Chem. Lett. 2007;17:3172–3176. PubMed
Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–90. PubMed
Pohanka M., Hrabinova M., Kuca K. Diagnosis of intoxication by the organophosphate VX: Comparison between an electrochemical sensor and Ellman’s photometric method. Sensors. 2008;8:5229–5237. PubMed PMC
Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007;370:223–227. PubMed
Duan J.X., Dixon S.L., Lowrie J.F., Sherman W. Analysis and comparison of 2D fingerprints: Insights into database screening performance using eight fingerprint methods. J. Mol. Graph. Model. 2010;29:157–170. PubMed
Trott O., Olson A.J. Software news and update autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed
Kryger G., Harel M., Giles K., Toker L., Velan B., Lazar A., Kronman C., Barak D., Ariel N., Shafferman A., et al. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr. D. 2000;56:1385–1394. PubMed
Harel M., Schalk I., Ehretsabatier L., Bouet F., Goeldner M., Hirth C., Axelsen P.H., Silman I., Sussman J.L. Quaternary ligand-binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA. 1993;90:9031–9035. PubMed PMC
Bourne Y., Grassi J., Bougis P.E., Marchot P. Conformational flexibility of the acetylcholinesterase tetramer suggested by X-ray crystallography. J. Biol. Chem. 1999;274:30370–30376. PubMed
Carltonine-derived compounds for targeted butyrylcholinesterase inhibition
Toxic Injury to Muscle Tissue of Rats Following Acute Oximes Exposure
Development of 2-Methoxyhuprine as Novel Lead for Alzheimer's Disease Therapy