Characterization of neutral lipase BT-1 isolated from the labial gland of Bombus terrestris males

. 2013 ; 8 (11) : e80066. [epub] 20131108

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24260337

BACKGROUND: In addition to their general role in the hydrolysis of storage lipids, bumblebee lipases can participate in the biosynthesis of fatty acids that serve as precursors of pheromones used for sexual communication. RESULTS: We studied the temporal dynamics of lipolytic activity in crude extracts from the cephalic part of Bombus terrestris labial glands. Extracts from 3-day-old males displayed the highest lipolytic activity. The highest lipase gene expression level was observed in freshly emerged bumblebees, and both gene expression and lipase activity were lower in bumblebees older than 3 days. Lipase was purified from labial glands, further characterized and named as BT-1. The B. terrestris orthologue shares 88% sequence identity with B. impatiens lipase HA. The molecular weight of B. terrestris lipase BT-1 was approximately 30 kDa, the pH optimum was 8.3, and the temperature optimum was 50°C. Lipase BT-1 showed a notable preference for C8-C10 p-nitrophenyl esters, with the highest activity toward p-nitrophenyl caprylate (C8). The Michaelis constant (Km) and maximum reaction rate (Vmax) for p-nitrophenyl laurate hydrolysis were Km = 0.0011 mM and Vmax = 0.15 U/mg. CONCLUSION: This is the first report describing neutral lipase from the labial gland of B. terrestris. Our findings help increase understanding of its possible function in the labial gland.

Zobrazit více v PubMed

Song X, Qi X, Hao B, Qu Y (2008) Studies of substrate specificities of lipases from different sources. Eur J Lipid Sci Technol 110: 1095–1101. doi:10.1002/ejlt.200800073. DOI

Van Antwerpen R, Salvador K, Tolman K, Gentry C (1998) Uptake of lipids by developing oocytes of the hawkmoth Manduca sexta. The possible role of lipoprotein lipase. Insect Biochem Mol Biol 28: 399-408. doi:10.1016/S0965-1748(98)00012-5. PubMed: 9692240. PubMed DOI

Smith GM, Rothwell K, Wood SL, Yeaman SJ, Bownes M (1994) Specificity and localization of lipolytic activity in adult Drosophila melanogaster . Biochem J 304: 775-779. PubMed: 7818480. PubMed PMC

Arreguín-Espinosa R, Arreguín B, González C (2000) Purification and properties of a lipase from Cephaloleia presignis (Coleoptera, Chrysomelidae). Biotechnol Appl Biochem 31: 239-244. doi:10.1042/BA19990088. PubMed: 10814595. PubMed DOI

Arrese EL, Wells MA (1994) Purification and properties of a phosphorylatable triacylglycerol lipase from the fat body of an insect, Manduca sexta . J Lipid Res 35: 1652-1660. PubMed: 7806979. PubMed

Sun D, Steele JE (2002) Characterization of cockroach (Periplaneta americana) fat body phospholipase A(2) activity. Arch Insect Biochem Physiol 49: 149-157. doi:10.1002/arch.10014. PubMed: 11857675. PubMed DOI

Patel RT, Soulages JL, Hariharasundaram B, Arrese EL (2005) Activation of the lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body. J Biol Chem 280: 22624-22631. doi:10.1074/jbc.M413128200. PubMed: 15829485. PubMed DOI

Auerswald L, Gäde G (2006) Endocrine control of TAG lipase in the fat body of the migratory locust, Locusta migratoria . Insect Biochem Mol Biol 36: 759-768. doi:10.1016/j.ibmb.2006.07.004. PubMed: 17027842. PubMed DOI

Rivers DB, Denlinger DL (1995) Venom-induced alterations in fly lipid-metabolism and its impact on larval development of the Ectoparasitoid Nasomnia vitripennis (walker) (Hymenoptera: Pteromalidae). J Invertebr Pathol 66: 104-110. doi:10.1006/jipa.1995.1071. DOI

de Graaf DC, Brunain M, Scharlaken B, Peiren N, Devreese B et al. (2010) Two novel proteins expressed by the venom glands of Apis mellifera and Nasonia vitripennis share an ancient C1q-like domain. Insect Mol Biol 19: 1-10. doi:10.1111/j.1365-2583.2009.00980.x. PubMed: 20167013. PubMed DOI

Peiren N, Vanrobaeys F, de Graaf DC, Devreese B, Van Beeumen J et al. (2005) The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim Biophys Acta 1752: 1-5. doi:10.1016/j.bbapap.2005.07.017. PubMed: 16112630. PubMed DOI

Bergström G, Svensson BG, Appelgren M, Groth I (1981) Complexity of bumble bee marking pheromones: biochemical, ecological and systematical interpretations. In: Howse E, Clément JL. Biosystematics of Social Insects. New York: Academic Press; pp 175–183.

Valterová I, Urbanová K (1997) Chemical signals of bumblebees. Chem Listy 91: 846–857 (in Czech).

Šobotník J, Kalinová B, Cahlíková L, Weyda F, Ptáček V et al. (2008) Age-dependent changes in structure and function of the male labial gland in Bombus terrestris . J Insect Physiol 54: 204–214. doi:10.1016/j.jinsphys.2007.09.003. PubMed: 17950308. PubMed DOI

Matsuoka K, Tabunoki H, Kawai T, Ishikawa S, Yamamoto M et al. (2006) Transport of a hydrophobic biosynthetic precursor by lipophorin in the hemolymph of a geometrid female moth which secretes an epoxyalkenyl sex pheromone. Insect Biochem Mol Biol 36: 576-583. doi:10.1016/j.ibmb.2006.04.006. PubMed: 16835023. PubMed DOI

Žáček P, Prchalová-Horňáková D, Tykva R, Kindl J, Vogel H et al. (2013) De novo biosynthesis of sexual pheromone in the labial gland of bumblebee males. Chembiochem 14: 361-371. doi:10.1002/cbic.201200684. PubMed: 23325667. PubMed DOI

Luxová A, Valterová I, Stránský K, Hovorka O, Svatoš A (2003) Biosynthetic studies on marking pheromones of bumblebee males. Chemoecology 13: 81–87.

Ptáček V, Pernová E, Borovec R (2000) The two-queen cascade method as an alternative technique for starting bumblebee (Bombus, Hymenoptera, Apidae) colonies in laboratory (preliminary study). Pcelnicze Zeszyty Naukowe 44: 305-309.

Vorderwülbecke T, Kieslich K, Erdmann H (1992) Comparison of lipases by different assays. Enzyme Microb Technol 14: 631–639. doi:10.1016/0141-0229(92)90038-P. DOI

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. doi:10.1016/0003-2697(76)90527-3. PubMed: 942051. PubMed DOI

Sidell BD, Hazel JR (2002) Triacylglycerol lipase activities in tissues of Antarctic fishes. Polar Biol 25: 517-522. doi:10.1007/s00300-002-0375-x. DOI

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. doi:10.1038/227680a0. PubMed: 5432063. PubMed DOI

Pan D, Hill AP, Kashou A, Wilson KA, Tan-Wilson A (2011) Electrophoretic transfer protein zymography. Anal Biochem 411: 277-283. doi:10.1016/j.ab.2011.01.015. PubMed: 21241652. PubMed DOI

Sommer P, Bormann C, Götz F (1997) Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus . Appl Environ Microbiol 63: 3553-3560. PubMed: 9293006. PubMed PMC

Diaz P, Prim N, Pastor FIJ (1999) Direct fluorescence-based lipase activity assay. BioTechiques 27: 696-700. PubMed: 10524309. PubMed

Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM et al. (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 26: 1628–1635. doi:10.1093/nar/26.7.1628. PubMed: 9512532. PubMed DOI PMC

Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10: 8. doi:10.1186/1471-2148-10-8. PubMed: 20067610. PubMed DOI PMC

Dereeper A, Guignon V, Blanc G, Audic S, Buffet S et al. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36 Available: http://www.globalizationandhealth.com/content/1/1/14. [Accessed 2008 April 19]. PubMed PMC

Corpet F (1988) Multiple sequence alignment with hierarchial clustering. Nucleic Acids Res 16: 10881-10890. doi:10.1093/nar/16.22.10881. PubMed: 2849754. PubMed DOI PMC

Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365-386. PubMed: 10547847. PubMed

Horňáková D, Matoušková P, Kindl J, Valterová I, Pichová I (2010) Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. Anal Biochem 397: 118-120. doi:10.1016/j.ab.2009.09.019. PubMed: 19751695. PubMed DOI

Fernández-Lorente G, Ortiz C, Segura RL, Fernández-Lafuente R, Guisán JM et al. (2005) Purification of different lipases from Aspergillus niger by using a highly selective adsorption on hydrophobic supports. Biotechnol Bioeng 92: 773–779. doi:10.1002/bit.20656. PubMed: 16155948. PubMed DOI

Volpato G, Filice M, Ayub MAZ, Guisan JM, Palomo JM (2010) Single-step purification of different lipases from Staphylococcus warneri . J Chromatogr A 1217: 473-478. doi:10.1016/j.chroma.2009.11.055. PubMed: 19954784. PubMed DOI

Buček A, Vogel H, Matoušková P, Prchalová D, Žáček P et al. (2013) The role of desaturases in the biosynthesis of marking pheromones in bumblebee males. Insect Biochem Mol Biol. In press PubMed

Horne I, Haritos VS, Oakeshott JG (2009) Comparative and functional genomics of lipases in holometabolous insects. Insect Biochem Mol Biol 39: 547-567. doi:10.1016/j.ibmb.2009.06.002. PubMed: 19540341. PubMed DOI

Werren JH, Richards S, Desjardins CHA, Niehuis O, Gadau J et al. (2010) Functional and Evolutionary Insights from the Genomes of Three Parasitoid Nasonia Species. Science 327: 343-348. doi:10.1126/science.1178028. PubMed: 20075255. PubMed DOI PMC

The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera . Nature 443: 931-949. doi:10.1038/nature05260. PubMed: 17073008. PubMed DOI PMC

Chahinian H, Nini L, Boitard E, Dubès JP, Comeau LC et al. (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37: 653–662. doi:10.1007/s11745-002-0946-7. PubMed: 12216836. PubMed DOI

Derewenda ZS, Sharp AM (1993) News from the interface: the molecular structures of triacyglyceride lipases. Trends Biochem Sci 18: 20-25. doi:10.1016/0968-0004(93)90082-X. PubMed: 8438232. PubMed DOI

Sharon C, Furugoh S, Yamakido T, Ogawa H, Kato Y (1998) Purification and characterization of a lipase from Pseudomonas aeruginosa KKA-5 and its role in castor oil hydrolysis. J Ind Microbiol Biotechnol 20: 304- 307. doi:10.1038/sj.jim.2900528. DOI

Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica . FEMS Microbiol Rev 19: 219–237. doi:10.1111/j.1574-6976.1997.tb00299.x. PubMed: 9167256. PubMed DOI

Gilbert LI, Chino H, Domroese KA (1965) Lipolytic activity of insect tissues and its significance in lipid transport. J Insect Physiol 11: 1057–1070. doi:10.1016/0022-1910(65)90178-2. PubMed: 5826991. PubMed DOI

Žáček P, Kalinová B, Šobotník J, Hovorka O, Ptáček V et al. (2009) Comparison of age-dependent quantitative changes in the male labial gland secretion of Bombus terrestris and Bombus lucorum. J Chem Ecol 35: 698–705. doi:10.1007/s10886-009-9650-4. PubMed: 19543770. PubMed DOI

Chapman RF (1998) The insect: Structure and Function. Cambridge University Press.

Ponnuvel KM, Nakazawa H, Furukawa S, Asaoka A, Ishibashi J et al. (2003) A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus . J Virol 77: 10725-10729. doi:10.1128/JVI.77.19.10725-10729.2003. PubMed: 12970462. PubMed DOI PMC

Mrdaković M, Lazarević J, Perić-Mataruga V, Ilijin L, Vlahović M (2008) Partial characterization of a lipase from gypsy moth (Lymantria dispar L.) larval midgut. Folia Biol 56: 103-110. PubMed

Rana RL, Hoback WW, Nor Aliza AR, Bedick J, Stanley DW (1997) Pre-oral digestion: A phospholipase A2 associated with oral secretions in adult burying beetles, Nicrophorus marginatus . Comp Biochem Physiol 118B: 375-380.

Nor Aliza AR, Rana RL, Skoda SR, Berkebile DR, Stanley DW (1999) Tissue polyunsaturated fatty acids and a digestive phospholipaseA2 in the primary screwworm, Cochliomyia hominivorax . Insect Biochem Mol Biol 29: 1029-1038. doi:10.1016/S0965-1748(99)00080-6. DOI

Nor Aliza AR, Stanley DW (1998) A digestive phospholipase A2 in larval mosquitoes, Aedes aegypti . Insect Biochem Mol Biol 28: 561-569. doi:10.1016/S0965-1748(98)00050-2. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...