The association between APOA5 haplotypes and plasma lipids is not modified by energy or fat intake: the Czech HAPIEE study

. 2014 Mar ; 24 (3) : 243-7. [epub] 20131009

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24462044

Grantová podpora
R01 AG023522 NIA NIH HHS - United States
R01 AG23522-01 NIA NIH HHS - United States
081081 Wellcome Trust - United Kingdom
064947 Wellcome Trust - United Kingdom

Odkazy

PubMed 24462044
PubMed Central PMC4357849
DOI 10.1016/j.numecd.2013.08.008
PII: S0939-4753(13)00199-3
Knihovny.cz E-zdroje

BACKGROUND AND AIMS: Several smaller studies reported interactions between dietary factors and apolipoprotein A5 (APOA5) gene polymorphisms in determination of plasma lipids. We tested interactions between APOA5 haplotypes and dietary intake in determination of plasma triglycerides (TG) and other lipids. METHODS AND RESULTS: Participants (5487 males and females aged 45-69) were classified according to the number (0, 1, 2+) of minor APOA5 alleles (using T-1131 > C; rs662799 and Ser19 > Trp; rs3135506 polymorphisms) and into three groups of low (bottom 25%), medium (26th-75th percentile) and high (top 25%) of intake of total energy and total, saturated and polyunsaturated fats, assessed by food frequency questionnaire. The age-sex adjusted geometric means of plasma TG increased with the number of minor alleles, from 1.57 (standard error 0.01), to 1.79 (0.02) to 2.29 (0.10) mmol/L (p < 0.00001) but TG did not differ between groups with low, medium and high total energy intake (p = 0.251). TG concentrations were highest in subjects with the combination of 2+ minor alleles and the highest energy intake (mean 2.59 [0.19], compared with 1.62 [0.03] in subjects with lowest energy intake and no minor allele) but the interaction between energy intake and APOA5 haplotypes was not statistically significant (p = 0.186). Analogous analyses with total, saturated and polyunsaturated fat intake yielded similar nonsignificant results. Effects of APOA5 and dietary intakes on total and HDL cholesterol were weaker and no interactions were significant. CONCLUSION: In this Slavic Caucasian population sample, we did not detect the hypothesized interaction between common SNPs within the APOA5 gene and diet in determination of blood lipids.

Zobrazit více v PubMed

Forrester J.S. Triglycerides: risk factor or fellow traveler? Curr Opin Cardiol. 2001;16:261–264. PubMed

Pennacchio L.A., Olivier M., Hubacek J.A., Cohen J.C., Cox D.R., Fruchart J.C., et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science. 2001;294:169–173. PubMed

Triglyceride Coronary Disease Genetics Consortium and Emerging Risk Factors Collaboration. Sarwar N., Sandhu M.S., Ricketts S.L., Butterworth A.S., Di Angelantonio E., Boekholdt S.M., et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet. 2010;375:1634–1639. PubMed PMC

Fruchart-Najib J., Bauge E., Niculescu L.S., Pham T., Thomas B., Rommens C., et al. Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem Biophys Res Commun. 2004;319:397–404. PubMed

Schaap F.G., Rensen P.C., Voshol P.J., Vrins C., van der Vliet H.N., Chamuleau R.A., et al. ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J Biol Chem. 2004;279:27941–27947. PubMed

Dorfmeister B., Zeng W.W., Dichlberger A., Nilsson S.K., Schaap F.G., Hubacek J.A., et al. Effects of six APOA5 variants, identified in patients with severe hypertriglyceridemia, on in vitro lipoprotein lipase activity and receptor binding. Arterioscler Thromb Vasc Biol. 2008;28:1866–1871. PubMed

Pennacchio L.A., Olivier M., Hubacek J.A., Krauss R.M., Rubin E.M., Cohen J.C. Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet. 2002;11:3031–3038. PubMed

Hubacek J.A. Apolipoprotein A5 and triglyceridemia. Focus on the effects of the common variants. Clin Chem Lab Med. 2005;43:897–902. PubMed

Hubacek J.A., Skodova Z., Adamkova V., Lanska V., Poledne R. The influence of APOAV polymorphisms (T-1131 > C and S19 > W) on plasma triglyceride levels and risk of myocardial infarction. Clin Genet. 2004;65:126–130. PubMed

Tai E.S., Ordovas J.M. Clinical significance of apolipoprotein A5. Curr Opin Lipidol. 2008;19:349–354. PubMed PMC

Jang Y., Chae J.S., Kim O.Y., Park H.J., Kim J.Y., Paik J.K., et al. APOA5-1131T > C genotype effects on apolipoprotein A5 and triglyceride levels in response to dietary intervention and regular exercise (DIRE) in hypertriglyceridemic subjects. Atherosclerosis. 2010;211:512–519. PubMed

Lin J., Fang D.Z., Du J., Shigdar S., Xiao L.Y., Zhou X.D., et al. Elevated levels of triglyceride and triglyceride-rich lipoprotein triglyceride induced by a high-carbohydrate diet is associated with polymorphisms of APOA5-1131T > C and APOC3-482C > T in Chinese healthy young adults. Ann Nutr Metab. 2011;58:150–157. PubMed

Kim J.Y., Kim O.Y., Koh S.J., Jang Y., Yun S.S., Ordovas J.M., et al. Comparison of low-fat meal and high-fat meal on postprandial lipemic response in non-obese men according to the -1131T > C polymorphism of the apolipoprotein A5 (APOA5) gene (randomized cross-over design) J Am Coll Nutr. 2006;25:340–347. PubMed

Zhang X., Qi Q., Bray G.A., Hu F.B., Sacks F.M., Qi L. APOA5 genotype modulates 2-y changes in lipid profile in response to weight-loss diet intervention: the Pounds Lost Trial. Am J Clin Nutr. 2012;96:917–922. PubMed PMC

Lai C.Q., Corella D., Demissie S., Cupples L.A., Adiconis X., Zhu Y., et al. Dietary intake of n-6 fatty acids modulates effect of apolipoprotein A5 gene on plasma fasting triglycerides, remnant lipoprotein concentrations, and lipoprotein particle size: the Framingham Heart Study. Circulation. 2006;113:2062–2070. PubMed

Mattei J., Demissie S., Tucker K.L., Ordovas J.M. Apolipoprotein A5 polymorphisms interact with total dietary fat intake in association with markers of metabolic syndrome in Puerto Rican older adults. J Nutr. 2009;139:2301–2308. PubMed PMC

Marques-Vidal P., Arveiler D., Evans A., Amouyel P., Ferrieres J., Ducimetiere P. Different alcohol drinking and blood pressure relationships in France and Northern Ireland: the PRIME Study. Hypertension. 2001;38:1361–1366. PubMed

Peasey A., Bobak M., Kubinova R., Malyutina S., Pajak A., Tamosiunas A., et al. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: rationale and design of the HAPIEE study. BMC Public Health. 2006;18:255. www.biomedcentral.com/1471-2458/6/255 PubMed PMC

Willett W.C., Sampson L., Stampfer M.J., Rosner B., Bain C., Witschi J., et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol. 1985;122:51–65. PubMed

Brunner E., Stallone D., Juneja M., Bingham S., Marmot M. Dietary assessment of Whitehall II: comparison of 7-day diet diary and food frequency questionnaire and validity against biomarkers. Br J Nutr. 2001;85:405–414. PubMed

McCance R., Widdowson E. Royal Statistical Society; Cambridge: 2002. McCance & Widdowson's the composition of foods: summary edition.

Boylan S., Welch A., Pikhart H., Malyutina S., Pajak A., Kubinova R., et al. Dietary habits in three Central and Eastern European countries: the HAPIEE study. BMC Public Health. 2009;9:439. PubMed PMC

Krauss R.M. Dietary and genetic probes of atherogenic dyslipidemia. Arterioscler Thromb Vasc Biol. 2005;25:2265–2272. PubMed

Fenech M., El-Sohemy A., Cahill L., Ferguson L.R., French T.A., Tai E.S., et al. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J Nutrigenet Nutrigenomics. 2011;4:69–89. PubMed PMC

Garcia-Rios A., Perez-Martinez P., Delgado-Lista J., Lopez-Miranda J., Perez-Jimenez F. Nutrigenetics of the lipoprotein metabolism. Mol Nutr Food Res. 2012;56:171–183. PubMed

Hubacek J.A., Skodova Z., Adamkova V., Lanska V., Pitha J. APOA5 variant Ser19Trp influences a decrease of the total cholesterol in a male 8 year cohort. Clin Biochem. 2006;39:133–136. PubMed

Hubacek J.A., Bohuslavova R., Skodova Z., Pitha J., Bobkova D., Poledne R. Polymorphisms in the APOA1/C3/A4/A5 gene cluster and cholesterol responsiveness to dietary change. Clin Chem Lab Med. 2007;45:316–320. PubMed

Paula R.S., Souza V.C., Benedet A.L., Souza E.R., Toledo J.O., Moraes C.F., et al. Dietary fat and apolipoprotein genotypes modulate plasma lipoprotein levels in Brazilian elderly women. Mol Cell Biochem. 2010;337:307–315. PubMed

Sanchez-Moreno C., Ordovas J.M., Smith C.E., Baraza J.C., Lee Y.C., Garaulet M. APOA5 gene variation interacts with dietary fat intake to modulate obesity and circulating triglycerides in a Mediterranean population. J Nutr. 2011;141:380–385. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Apolipoprotein A5 fifteen years anniversary: Lessons from genetic epidemiology

. 2016 Oct 30 ; 592 (1) : 193-199. [epub] 20160802

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...