Antitumor activity and immunogenicity of recombinant vaccinia virus expressing HPV 16 E7 protein SigE7LAMP is enhanced by high-level coexpression of IGFBP-3
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24556712
DOI
10.1038/cgt.2014.6
PII: cgt20146
Knihovny.cz E-resources
- MeSH
- Antigens, Viral immunology MeSH
- Insulin-Like Growth Factor Binding Protein 3 genetics immunology MeSH
- Immunization methods MeSH
- Human papillomavirus 16 genetics immunology MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Papillomavirus E7 Proteins genetics immunology MeSH
- Promoter Regions, Genetic MeSH
- Virus Replication immunology MeSH
- T-Lymphocytes immunology MeSH
- Antibody Formation MeSH
- Vaccination methods MeSH
- Viral Vaccines immunology pharmacology MeSH
- Vaccinia virus genetics immunology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Viral MeSH
- Insulin-Like Growth Factor Binding Protein 3 MeSH
- oncogene protein E7, Human papillomavirus type 16 MeSH Browser
- Papillomavirus E7 Proteins MeSH
- Viral Vaccines MeSH
We constructed recombinant vaccinia viruses (VACVs) coexpressing the insulin-like growth factor-binding protein-3 (IGFBP-3) gene and the fusion gene encoding the SigE7Lamp antigen. The expression of the IGFBP-3 transgene was regulated either by the early H5 promoter or by the synthetic early/late (E/L) promoter. We have shown that IGFBP-3 expression regulated by the H5 promoter yielded higher amount of IGFBP-3 protein when compared with the E/L promoter. The immunization with P13-SigE7Lamp-H5-IGFBP-3 virus was more effective in inhibiting the growth of TC-1 tumors in mice and elicited higher T-cell response against VACV-encoded antigen than the P13-SigE7Lamp-TK(-) control virus. We found that high-level production of IGFBP-3 enhanced virus replication both in vitro and in vivo, resulting in more profound antigen stimulation. Production of IGFBP-3 was associated with a higher adsorption rate of P13-SigE7Lamp-H5-IGFBP-3 to CV-1 cells when compared with P13-SigE7Lamp-TK(-). Intracellular mature virions (IMVs) of the IGFBP-3-expressing virus P13-SigE7Lamp-H5-IGFBP-3 have two structural differences: they incorporate the IGFBP-3 protein and they have elevated phosphatidylserine (PS) exposure on outer membrane that could result in increased uptake of IMVs by macropinocytosis. The IMV PS content was measured by flow cytometry using microbeads covered with immobilized purified VACV virions.
See more in PubMed
Cancer Gene Ther. 2004 Dec;11(12):808-18 PubMed
Rev Med Virol. 2006 May-Jun;16(3):187-202 PubMed
Exp Gerontol. 2004 Sep;39(9):1369-78 PubMed
Int J Cancer. 1995 Oct 9;63(2):231-7 PubMed
J Gene Med. 2003 Aug;5(8):690-9 PubMed
J Natl Cancer Inst. 1992 Jul 15;84(14):1084-91 PubMed
Br J Cancer. 2001 Feb 2;84(3):374-80 PubMed
Cancer Res. 1996 Jan 1;56(1):21-6 PubMed
Cancer Res. 2000 Nov 1;60(21):6111-5 PubMed
Cell. 1986 Feb 28;44(4):587-96 PubMed
J Clin Invest. 1979 May;63(5):1077-84 PubMed
Virus Res. 2011 Sep;160(1-2):40-50 PubMed
Circ Res. 2009 Oct 23;105(9):897-905 PubMed
Exp Cell Res. 2008 Aug 1;314(13):2352-61 PubMed
Arch Virol. 1987;94(3-4):347-51 PubMed
Oncol Rep. 2009 May;21(5):1335-43 PubMed
Viral Immunol. 2012 Oct;25(5):411-22 PubMed
Immunol Lett. 1999 Jan;65(1-2):55-62 PubMed
Cancer Res. 2003 Oct 15;63(20):6956-61 PubMed
Horm Metab Res. 2010 Mar;42(3):165-72 PubMed
Cancer Res. 2009 Mar 15;69(6):2615-22 PubMed
Cancer Lett. 2002 Feb 25;176(2):149-58 PubMed
Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14453-8 PubMed
Carcinogenesis. 2007 Dec;28(12):2511-20 PubMed
Cell Mol Biol (Noisy-le-grand). 1994;40 Suppl 1:49-59 PubMed
J Interferon Cytokine Res. 2009 Sep;29(9):581-98 PubMed
J Biol Chem. 2005 Jun 17;280(24):22606-15 PubMed
J Biol Chem. 2011 May 20;286(20):17898-909 PubMed
Gene. 2013 Jan 1;512(1):127-33 PubMed
Urol Oncol. 2006 Jul-Aug;24(4):294-306 PubMed
Cancer Immunol Immunother. 2002 Apr;51(2):111-9 PubMed
Arch Virol. 1994;134(1-2):1-15 PubMed
Arch Virol. 2001;146(5):875-92 PubMed
Growth Horm IGF Res. 2008 Dec;18(6):487-96 PubMed
Cancer Lett. 2011 Aug 28;307(2):200-10 PubMed
Hum Vaccin. 2010 Oct;6(10):784-91 PubMed
J Biol Chem. 2002 May 24;277(21):18860-7 PubMed
Biotechniques. 1997 Dec;23(6):1094-7 PubMed
J Gen Virol. 1986 Oct;67 ( Pt 10):2067-82 PubMed
Vaccine. 1995 Apr;13(5):487-93 PubMed
Int J Mol Med. 2003 Nov;12(5):789-96 PubMed
Science. 2008 Apr 25;320(5875):531-5 PubMed
J Biol Chem. 2004 Jan 2;279(1):469-76 PubMed
Virology. 1986 Jul 30;152(2):285-97 PubMed
Int J Cancer. 2012 Apr 1;130(7):1544-57 PubMed
Mol Cancer Ther. 2002 Oct;1(12):1129-37 PubMed
Anal Chem. 2009 Mar 15;81(6):2388-93 PubMed
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12052-7 PubMed
Am J Physiol Cell Physiol. 2009 May;296(5):C954-76 PubMed
Cytokine Growth Factor Rev. 1997 Mar;8(1):45-62 PubMed
J Immunol. 2005 Dec 15;175(12):8431-7 PubMed
Cancer Res. 2006 May 15;66(10):5021-8 PubMed
Virology. 1962 Sep;18:9-18 PubMed
Int J Cancer. 2005 Jan 10;113(2):259-66 PubMed
Expert Opin Investig Drugs. 2009 Jul;18(7):1001-11 PubMed
J Biol Chem. 2004 Jan 2;279(1):477-87 PubMed
Cancer Res. 2006 Mar 15;66(6):3024-33 PubMed
J Biol Chem. 2000 Aug 4;275(31):23462-70 PubMed
Int J Oncol. 2004 Jun;24(6):1581-8 PubMed
Neoplasma. 2011;58(3):181-8 PubMed
J Biol Chem. 2010 Sep 24;285(39):30233-46 PubMed
J Biol Chem. 1999 Jun 4;274(23):16407-11 PubMed
Cancer Immunol Immunother. 2011 Feb;60(2):261-71 PubMed
Cancer Res. 2002 Oct 15;62(20):5770-7 PubMed
J Biol Chem. 2005 Apr 29;280(17):16942-8 PubMed
Int J Cancer. 2007 Feb 1;120(3):566-73 PubMed
Virol J. 2010 May 26;7:109 PubMed