Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer's disease
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
24672452
PubMed Central
PMC3955968
DOI
10.3389/fnbeh.2014.00089
Knihovny.cz E-resources
- Keywords
- Alzheimer’s disease, brain changes, mild cognitive impairment, spatial disorientation, spatial navigation,
- Publication type
- Journal Article MeSH
- Review MeSH
Although the memory impairment is a hallmark of Alzheimer's disease (AD), AD has also been characterized by spatial disorientation, which is present from its early stages. Spatial disorientation in AD manifests itself in getting lost in familiar and unfamiliar places and have been characterized more specifically using spatial navigation tests in both real space and virtual environments as an impairment in multiple spatial abilities, including allocentric and egocentric navigation strategies, visuo-spatial perception, or selection of relevant information for successful navigation. Patients suffering mild cognitive impairment (MCI), who are at a high risk of development of dementia, show impairment in a subset of these abilities, mainly connected with allocentric and egocentric processing. While spatial disorientation in typical AD patients probably reflects neurodegenerative changes in medial and posterior temporal, parietal, and frontal lobes, and retrosplenial cortex, the impairment of spatial navigation in MCI seem to be connected mainly with the medial temporal and also parietal brain changes. In this review, we will summarize the signs of brain disease in most MCI and AD patients showing in various tasks of spatial memory and navigation.
See more in PubMed
Adelstein T. B., Kesner R. P., Strassberg D. S. (1992). Spatial recognition and spatial order memory in patients with dementia of the Alzheimer’s type. Neuropsychologia 30, 59–6710.1016/0028-3932(92)90014-D PubMed DOI
Aguirre G. K., D’Esposito M. (1999). Topographical disorientation: a synthesis and taxonomy. Brain 122, 1613–162810.1093/brain/122.9.1613 PubMed DOI
Aguirre G. K., Zarahn E., D’Esposito M. (1998). An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21, 373–38310.1016/S0896-6273(00)80546-2 PubMed DOI
Astur R. S., Taylor L. B., Mamelak A. N., Philpott L., Sutherland R. J. (2002). Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav. Brain Res. 132, 77–8410.1016/S0166-4328(01)00399-0 PubMed DOI
Bellassen V., Igloi K., de Souza L. C., Dubois B., Rondi-Reig L. (2012). Temporal order memory assessed during spatiotemporal navigation as a behavioral cognitive marker for differential Alzheimer’s disease diagnosis. J. Neurosci. 32, 1942–195210.1523/JNEUROSCI.4556-11.2012 PubMed DOI PMC
Benke T., Karner E., Petermichl S., Prantner V., Kemmler G. (2013). Neuropsychological deficits associated with route learning in Alzheimer disease, MCI, and normal aging. Alzheimer Dis. Assoc. Disord. 10.1097/WAD.0000000000000009 PubMed DOI
Bird C. M., Chan D., Hartley T., Pijnenburg Y. A., Rossor M. N., Burgess N. (2010). Topographical short-term memory differentiates Alzheimer’s disease from frontotemporal lobar degeneration. Hippocampus 20, 1154–116910.1002/hipo.20715 PubMed DOI
Braak H., Braak E. (1995). Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–27810.1016/0197-4580(95)00021-6 PubMed DOI
Brandt J., Shpritz B., Munro C. A., Marsh L., Rosenblatt A. (2005). Differential impairment of spatial location memory in Huntington’s disease. J. Neurol. Neurosurg. Psychiatr. 76, 1516–151910.1136/jnnp.2004.059253 PubMed DOI PMC
Bucks R. S., Willison J. R. (1997). Development and validation of the location learning test (LLT): a test of visuo-spatial learning designed for use with older adults and in dementia. Clin. Neuropsychol. 11, 273–28610.1080/13854049708400456 DOI
Byrne P., Becker S., Burgess N. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–37510.1037/0033-295X.114.2.340 PubMed DOI PMC
Cherrier M. M., Mendez M., Perryman K. (2001). Route learning performance in Alzheimer disease patients. Neuropsychiatry Neuropsychol. Behav. Neurol. 14, 159–168 PubMed
Chetelat G., Desgranges B., De La Sayette V., Viader F., Eustache F., Baron J. C. (2002). Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 13, 1939–194310.1097/00001756-200210280-00022 PubMed DOI
Cushman L. A., Duffy C. J. (2007). The sex specificity of navigational strategies in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 21, 122–12910.1097/WAD.0b013e318047df2f PubMed DOI
Cushman L. A., Stein K., Duffy C. J. (2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology 71, 888–89510.1212/01.wnl.0000326262.67613.fe PubMed DOI PMC
deIpolyi A. R., Rankin K. P., Mucke L., Miller B. L., Gorno-Tempini M. L. (2007). Spatial cognition and the human navigation network in AD and MCI. Neurology 69, 986–99710.1212/01.wnl.0000271376.19515.c6 PubMed DOI
Drzezga A., Lautenschlager N., Siebner H., Riemenschneider M., Willoch F., Minoshima S., et al. (2003). Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur. J. Nucl. Med. Mol. Imaging 30, 1104–111310.1007/s00259-003-1194-1 PubMed DOI
Feigenbaum J. D., Morris R. G. (2004). Allocentric versus egocentric spatial memory after unilateral temporal lobectomy in humans. Neuropsychology 18, 462–47210.1037/0894-4105.18.3.462 PubMed DOI
Fennema-Notestine C., Hagler D. J., Jr, McEvoy L. K., Fleisher A. S., Wu E. H., Karow D. S., et al. (2009). Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Hum. Brain Mapp. 30, 3238–325310.1002/hbm.20744 PubMed DOI PMC
Gallistel C. R. (1990). The Organization of Learning. Cambridge: The MIT Press
Gazova I., Vlcek K., Laczo J., Nedelska Z., Hyncicova E., Mokrisova I., et al. (2012). Spatial navigation-a unique window into physiological and pathological aging. Front. Aging Neurosci. 4:16.10.3389/fnagi.2012.00016 PubMed DOI PMC
Hamalainen A., Tervo S., Grau-Olivares M., Niskanen E., Pennanen C., Huuskonen J., et al. (2007). Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment. Neuroimage 37, 1122–113110.1016/j.neuroimage.2007.06.016 PubMed DOI
Hartley T., Bird C. M., Chan D., Cipolotti L., Husain M., Vargha-Khadem F., et al. (2007). The hippocampus is required for short-term topographical memory in humans. Hippocampus 17, 34–4810.1002/hipo.20240 PubMed DOI PMC
Hartley T., Maguire E. A., Spiers H. J., Burgess N. (2003). The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37, 877–88810.1016/S0896-6273(03)00095-3 PubMed DOI
Henderson V. W., Mack W., Williams B. W. (1989). Spatial disorientation in Alzheimer’s disease. Arch. Neurol. 46, 391–39410.1001/archneur.1989.00520400045018 PubMed DOI
Hirao K., Ohnishi T., Hirata Y., Yamashita F., Mori T., Moriguchi Y., et al. (2005). The prediction of rapid conversion to Alzheimer’s disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28, 1014–102110.1016/j.neuroimage.2005.06.066 PubMed DOI
Hort J., Andel R., Mokrisova I., Gazova I., Amlerova J., Valis M., et al. (2014). Effect of donepezil in Alzheimer disease can be measured by a computerized human analog of the morris water maze. Neurodegener. Dis. 13, 192–19610.1159/000355517 PubMed DOI
Hort J., Laczo J., Vyhnalek M., Bojar M., Bures J., Vlcek K. (2007). Spatial navigation deficit in amnestic mild cognitive impairment. Proc. Natl. Acad. Sci. U.S.A. 104, 4042–404710.1073/pnas.0611314104 PubMed DOI PMC
Huang C., Wahlund L. O., Svensson L., Winblad B., Julin P. (2002). Cingulate cortex hypoperfusion predicts Alzheimer’s disease in mild cognitive impairment. BMC Neurol. 2:9.10.1186/1471-2377-2-9 PubMed DOI PMC
Iachini T., Iavarone A., Senese V. P., Ruotolo F., Ruggiero G. (2009). Visuospatial memory in healthy elderly, AD and MCI: a review. Curr. Aging Sci. 2, 43–5910.2174/1874612810902010043 PubMed DOI
Iaria G., Petrides M., Dagher A., Pike B., Bohbot V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J. Neurosci. 23, 5945–5952 PubMed PMC
Igloi K., Doeller C. F., Berthoz A., Rondi-Reig L., Burgess N. (2010). Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc. Natl. Acad. Sci. U.S.A. 107, 14466–1447110.1073/pnas.1004243107 PubMed DOI PMC
Ishiwata A., Sakayori O., Minoshima S., Mizumura S., Kitamura S., Katayama Y. (2006). Preclinical evidence of Alzheimer changes in progressive mild cognitive impairment: a qualitative and quantitative SPECT study. Acta Neurol. Scand. 114, 91–9610.1111/j.1600-0404.2006.00661.x PubMed DOI
Jacobs H. I., Van Boxtel M. P., Uylings H. B., Gronenschild E. H., Verhey F. R., Jolles J. (2011). Atrophy of the parietal lobe in preclinical dementia. Brain Cogn. 75, 154–16310.1016/j.bandc.2010.11.003 PubMed DOI
Johnson K. A., Moran E. K., Becker J. A., Blacker D., Fischman A. J., Albert M. S. (2007). Single photon emission computed tomography perfusion differences in mild cognitive impairment. J. Neurol. Neurosurg. Psychiatr. 78, 240–24710.1136/jnnp.2006.096800 PubMed DOI PMC
Julkunen V., Niskanen E., Muehlboeck S., Pihlajamaki M., Kononen M., Hallikainen M., et al. (2009). Cortical thickness analysis to detect progressive mild cognitive impairment: a reference to Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 28, 404–41210.1159/000256274 PubMed DOI
Kalova E., Vlcek K., Jarolimova E., Bures J. (2005). Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer’s disease: corresponding results in real space tests and computer tests. Behav. Brain Res. 159, 175–18610.1016/j.bbr.2004.10.016 PubMed DOI
Karas G., Sluimer J., Goekoop R., van der Flier W., Rombouts S. A., Vrenken H., et al. (2008). Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR Am. J. Neuroradiol. 29, 944–94910.3174/ajnr.A0949 PubMed DOI PMC
Karow D. S., McEvoy L. K., Fennema-Notestine C., Hagler D. J., Jr, Jennings R. G., Brewer J. B., et al. (2010). Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease. Radiology 256, 932–94210.1148/radiol.10091402 PubMed DOI PMC
Kavcic V., Fernandez R., Logan D., Duffy C. J. (2006). Neurophysiological and perceptual correlates of navigational impairment in Alzheimer’s disease. Brain 129, 736–74610.1093/brain/awh727 PubMed DOI
Kessels R. P., Hendriks M., Schouten J., Van Asselen M., Postma A. (2004). Spatial memory deficits in patients after unilateral selective amygdalohippocampectomy. J. Int. Neuropsychol. Soc. 10, 907–91210.1017/S1355617704106140 PubMed DOI
Kessels R. P., Rijken S., Joosten-Weyn Banningh L. W., Van Schuylenborgh-VAN Es N., Olde Rikkert M. G. (2010). Categorical spatial memory in patients with mild cognitive impairment and Alzheimer dementia: positional versus object-location recall. J. Int. Neuropsychol. Soc. 16, 200–20410.1017/S1355617709990944 PubMed DOI
Laczo J., Vlcek K., Vyhnalek M., Vajnerova O., Ort M., Holmerova I., et al. (2009). Spatial navigation testing discriminates two types of amnestic mild cognitive impairment. Behav. Brain Res. 202, 252–25910.1016/j.bbr.2009.03.041 PubMed DOI
Langbaum J. B., Chen K., Lee W., Reschke C., Bandy D., Fleisher A. S., et al. (2009). Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage 45, 1107–111610.1016/j.neuroimage.2008.12.072 PubMed DOI PMC
Lee A. C., Buckley M. J., Gaffan D., Emery T., Hodges J. R., Graham K. S. (2006). Differentiating the roles of the hippocampus and perirhinal cortex in processes beyond long-term declarative memory: a double dissociation in dementia. J. Neurosci. 26, 5198–520310.1523/JNEUROSCI.3157-05.2006 PubMed DOI PMC
Lee A. C., Buckley M. J., Pegman S. J., Spiers H., Scahill V. L., Gaffan D., et al. (2005). Specialization in the medial temporal lobe for processing of objects and scenes. Hippocampus 15, 782–79710.1002/hipo.20101 PubMed DOI
Li Y., Rinne J. O., Mosconi L., Pirraglia E., Rusinek H., DeSanti S., et al. (2008). Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 35, 2169–218110.1007/s00259-008-0833-y PubMed DOI PMC
Lithfous S., Dufour A., Despres O. (2013). Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res. Rev. 12, 201–21310.1016/j.arr.2012.04.007 PubMed DOI
Maguire E. A., Burgess N., Donnett J. G., Frackowiak R. S., Frith C. D., O’Keefe J. (1998). Knowing where and getting there: a human navigation network. Science 280, 921–92410.1126/science.280.5365.921 PubMed DOI
Mapstone M., Steffenella T. M., Duffy C. J. (2003). A visuospatial variant of mild cognitive impairment: getting lost between aging and AD. Neurology 60, 802–80810.1212/01.WNL.0000049471.76799.DE PubMed DOI
McDonald C. R., McEvoy L. K., Gharapetian L., Fennema-Notestine C., Hagler D. J., Jr, Holland D., et al. (2009). Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 73, 457–46510.1212/WNL.0b013e3181b16431 PubMed DOI PMC
Mendez M. F., Cherrier M. M. (2003). Agnosia for scenes in topographagnosia. Neuropsychologia 41, 1387–139510.1016/S0028-3932(03)00041-1 PubMed DOI
Milner B., Johnsrude I., Crane J. (1997). Right medial temporal-lobe contribution to object-location memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1469–147410.1098/rstb.1997.0133 PubMed DOI PMC
Monacelli A. M., Cushman L. A., Kavcic V., Duffy C. J. (2003). Spatial disorientation in Alzheimer’s disease: the remembrance of things passed. Neurology 61, 1491–149710.1212/WNL.61.11.1491 PubMed DOI
Morganti F., Stefanini S., Riva G. (2013). From allo- to egocentric spatial ability in early Alzheimer’s disease: a study with virtual reality spatial tasks. Cogn. Neurosci. 4, 171–18010.1080/17588928.2013.854762 PubMed DOI
Morrone M. C., Tosetti M., Montanaro D., Fiorentini A., Cioni G., Burr D. C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nat. Neurosci. 3, 1322–132810.1038/81860 PubMed DOI
Murray M. E., Graff-Radford N. R., Ross O. A., Petersen R. C., Duara R., Dickson D. W. (2011). Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 10, 785–79610.1016/S1474-4422(11)70156-9 PubMed DOI PMC
Nedelska Z., Andel R., Laczo J., Vlcek K., Horinek D., Lisy J., et al. (2012). Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. U.S.A. 109, 2590–259410.1073/pnas.1121588109 PubMed DOI PMC
Nestor P. J., Fryer T. D., Ikeda M., Hodges J. R. (2003a). Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer’s disease). Eur. J. Neurosci. 18, 2663–266710.1046/j.1460-9568.2003.02999.x PubMed DOI
Nestor P. J., Fryer T. D., Smielewski P., Hodges J. R. (2003b). Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann. Neurol. 54, 343–35110.1002/ana.10669 PubMed DOI
Nobili F., De Carli F., Frisoni G. B., Portet F., Verhey F., Rodriguez G., et al. (2009). SPECT predictors of cognitive decline and Alzheimer’s disease in mild cognitive impairment. J. Alzheimers Dis. 17, 761–77210.3233/JAD-2009-1091 PubMed DOI
Nobili F., Frisoni G. B., Portet F., Verhey F., Rodriguez G., Caroli A., et al. (2008). Brain SPECT in subtypes of mild cognitive impairment. Findings from the DESCRIPA multicenter study. J. Neurol. 255, 1344–135310.1007/s00415-008-0897-4 PubMed DOI
O’Brien H. L., Tetewsky S. J., Avery L. M., Cushman L. A., Makous W., Duffy C. J. (2001). Visual mechanisms of spatial disorientation in Alzheimer’s disease. Cereb. Cortex 11, 1083–109210.1093/cercor/11.11.1083 PubMed DOI
O’Keefe J., Nadel L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press
Pappata S., Varrone A., Vicidomini C., Milan G., De Falco C., Sansone V., et al. (2010). SPECT imaging of GABA(A)/benzodiazepine receptors and cerebral perfusion in mild cognitive impairment. Eur. J. Nucl. Med. Mol. Imaging 37, 1156–116310.1007/s00259-010-1409-1 PubMed DOI
Parslow D. M., Rose D., Brooks B., Fleminger S., Gray J. A., Giampietro V., et al. (2004). Allocentric spatial memory activation of the hippocampal formation measured with fMRI. Neuropsychology 18, 450–46110.1037/0894-4105.18.3.450 PubMed DOI
Passini R., Rainville C., Marchand N., Joanette Y. (1995). Wayfinding in dementia of the Alzheimer type: planning abilities. J. Clin. Exp. Neuropsychol. 17, 820–83210.1080/01688639508402431 PubMed DOI
Pengas G., Hodges J. R., Watson P., Nestor P. J. (2010a). Focal posterior cingulate atrophy in incipient Alzheimer’s disease. Neurobiol. Aging 31, 25–3310.1016/j.neurobiolaging.2008.03.014 PubMed DOI
Pengas G., Patterson K., Arnold R. J., Bird C. M., Burgess N., Nestor P. J. (2010b). Lost and found: bespoke memory testing for Alzheimer’s disease and semantic dementia. J. Alzheimers Dis. 21, 1347–136510.3233/JAD-2010-100654 PubMed DOI
Pengas G., Williams G. B., Acosta-Cabronero J., Ash T. W., Hong Y. T., Izquierdo-Garcia D., et al. (2012). The relationship of topographical memory performance to regional neurodegeneration in Alzheimer’s disease. Front. Aging Neurosci. 4:17.10.3389/fnagi.2012.00017 PubMed DOI PMC
Pennanen C., Kivipelto M., Tuomainen S., Hartikainen P., Hanninen T., Laakso M. P., et al. (2004). Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol. Aging 25, 303–31010.1016/S0197-4580(03)00084-8 PubMed DOI
Petersen R. C., Parisi J. E., Dickson D. W., Johnson K. A., Knopman D. S., Boeve B. F., et al. (2006). Neuropathologic features of amnestic mild cognitive impairment. Arch. Neurol. 63, 665–67210.1001/archneur.63.5.665 PubMed DOI
Rainville C., Marchand N., Passini R. (2002). Performances of patients with a dementia of the Alzheimer type in the Standardized Road-Map test of Direction Sense. Neuropsychologia 40, 567–57310.1016/S0028-3932(01)00133-6 PubMed DOI
Risacher S. L., Shen L., West J. D., Kim S., McDonald B. C., Beckett L. A., et al. (2010). Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort. Neurobiol. Aging 31, 1401–141810.1016/j.neurobiolaging.2010.04.029 PubMed DOI PMC
Scahill R. I., Schott J. M., Stevens J. M., Rossor M. N., Fox N. C. (2002). Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc. Natl. Acad. Sci. U.S.A. 99, 4703–470710.1073/pnas.052587399 PubMed DOI PMC
Schmidt-Wilcke T., Poljansky S., Hierlmeier S., Hausner J., Ibach B. (2009). Memory performance correlates with gray matter density in the ento-/perirhinal cortex and posterior hippocampus in patients with mild cognitive impairment and healthy controls – a voxel based morphometry study. Neuroimage 47, 1914–192010.1016/j.neuroimage.2009.04.092 PubMed DOI
Schuff N., Tosun D., Insel P. S., Chiang G. C., Truran D., Aisen P. S., et al. (2012). Nonlinear time course of brain volume loss in cognitively normal and impaired elders. Neurobiol. Aging 33, 845–85510.1016/j.neurobiolaging.2010.07.012 PubMed DOI PMC
Serino S., Riva G. (2013). Getting lost in Alzheimer’s disease: a break in the mental frame syncing. Med. Hypotheses 80, 416–42110.1016/j.mehy.2012.12.031 PubMed DOI
Smith C. D., Chebrolu H., Wekstein D. R., Schmitt F. A., Jicha G. A., Cooper G., et al. (2007). Brain structural alterations before mild cognitive impairment. Neurology 68, 1268–127310.1212/01.wnl.0000259542.54830.34 PubMed DOI
Spulber G., Niskanen E., Macdonald S., Kivipelto M., Padilla D. F., Julkunen V., et al. (2012). Evolution of global and local grey matter atrophy on serial MRI scans during the progression from MCI to AD. Curr. Alzheimer Res. 9, 516–52410.2174/156720512800492486 PubMed DOI
Stepankova K., Fenton A. A., Pastalkova E., Kalina M., Bohbot V. D. (2004). Object-location memory impairment in patients with thermal lesions to the right or left hippocampus. Neuropsychologia 42, 1014–102810.1016/j.neuropsychologia.2004.01.002 PubMed DOI
Tetewsky S. J., Duffy C. J. (1999). Visual loss and getting lost in Alzheimer’s disease. Neurology 52, 958–96510.1212/WNL.52.5.958 PubMed DOI
Vlcek K. (2011). “Spatial navigation impairment in healthy aging and Alzheimer’s disease,” in The Clinical Spectrum of Alzheimer’s Disease – The Charge Toward Comprehensive Diagnostic and Therapeutic Strategies, ed. De La Monte S. (Rijeka, Croatia: InTech; ), 75–100
Weniger G., Ruhleder M., Lange C., Wolf S., Irle E. (2011). Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia 49, 518–52710.1016/j.neuropsychologia.2010.12.031 PubMed DOI
Whitwell J. L., Dickson D. W., Murray M. E., Weigand S. D., Tosakulwong N., Senjem M. L., et al. (2012). Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol. 11, 868–87710.1016/S1474-4422(12)70200-4 PubMed DOI PMC
Whitwell J. L., Shiung M. M., Przybelski S. A., Weigand S. D., Knopman D. S., Boeve B. F., et al. (2008). MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology 70, 512–52010.1212/01.wnl.0000280575.77437.a2 PubMed DOI PMC
Wolbers T., Hegarty M., Buchel C., Loomis J. M. (2008). Spatial updating: how the brain keeps track of changing object locations during observer motion. Nat. Neurosci. 11, 1223–123010.1038/nn.2189 PubMed DOI
Wolbers T., Weiller C., Buchel C. (2004). Neural foundations of emerging route knowledge in complex spatial environments. Brain Res. Cogn. Brain Res. 21, 401–41110.1016/j.cogbrainres.2004.06.013 PubMed DOI
The Combined Effect of APOE and BDNF Val66Met Polymorphisms on Spatial Navigation in Older Adults
Famous landmark identification in amnestic mild cognitive impairment and Alzheimer's disease