• This record comes from PubMed

Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer's disease

. 2014 ; 8 () : 89. [epub] 20140317

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Review

Although the memory impairment is a hallmark of Alzheimer's disease (AD), AD has also been characterized by spatial disorientation, which is present from its early stages. Spatial disorientation in AD manifests itself in getting lost in familiar and unfamiliar places and have been characterized more specifically using spatial navigation tests in both real space and virtual environments as an impairment in multiple spatial abilities, including allocentric and egocentric navigation strategies, visuo-spatial perception, or selection of relevant information for successful navigation. Patients suffering mild cognitive impairment (MCI), who are at a high risk of development of dementia, show impairment in a subset of these abilities, mainly connected with allocentric and egocentric processing. While spatial disorientation in typical AD patients probably reflects neurodegenerative changes in medial and posterior temporal, parietal, and frontal lobes, and retrosplenial cortex, the impairment of spatial navigation in MCI seem to be connected mainly with the medial temporal and also parietal brain changes. In this review, we will summarize the signs of brain disease in most MCI and AD patients showing in various tasks of spatial memory and navigation.

See more in PubMed

Adelstein T. B., Kesner R. P., Strassberg D. S. (1992). Spatial recognition and spatial order memory in patients with dementia of the Alzheimer’s type. Neuropsychologia 30, 59–6710.1016/0028-3932(92)90014-D PubMed DOI

Aguirre G. K., D’Esposito M. (1999). Topographical disorientation: a synthesis and taxonomy. Brain 122, 1613–162810.1093/brain/122.9.1613 PubMed DOI

Aguirre G. K., Zarahn E., D’Esposito M. (1998). An area within human ventral cortex sensitive to “building” stimuli: evidence and implications. Neuron 21, 373–38310.1016/S0896-6273(00)80546-2 PubMed DOI

Astur R. S., Taylor L. B., Mamelak A. N., Philpott L., Sutherland R. J. (2002). Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav. Brain Res. 132, 77–8410.1016/S0166-4328(01)00399-0 PubMed DOI

Bellassen V., Igloi K., de Souza L. C., Dubois B., Rondi-Reig L. (2012). Temporal order memory assessed during spatiotemporal navigation as a behavioral cognitive marker for differential Alzheimer’s disease diagnosis. J. Neurosci. 32, 1942–195210.1523/JNEUROSCI.4556-11.2012 PubMed DOI PMC

Benke T., Karner E., Petermichl S., Prantner V., Kemmler G. (2013). Neuropsychological deficits associated with route learning in Alzheimer disease, MCI, and normal aging. Alzheimer Dis. Assoc. Disord. 10.1097/WAD.0000000000000009 PubMed DOI

Bird C. M., Chan D., Hartley T., Pijnenburg Y. A., Rossor M. N., Burgess N. (2010). Topographical short-term memory differentiates Alzheimer’s disease from frontotemporal lobar degeneration. Hippocampus 20, 1154–116910.1002/hipo.20715 PubMed DOI

Braak H., Braak E. (1995). Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–27810.1016/0197-4580(95)00021-6 PubMed DOI

Brandt J., Shpritz B., Munro C. A., Marsh L., Rosenblatt A. (2005). Differential impairment of spatial location memory in Huntington’s disease. J. Neurol. Neurosurg. Psychiatr. 76, 1516–151910.1136/jnnp.2004.059253 PubMed DOI PMC

Bucks R. S., Willison J. R. (1997). Development and validation of the location learning test (LLT): a test of visuo-spatial learning designed for use with older adults and in dementia. Clin. Neuropsychol. 11, 273–28610.1080/13854049708400456 DOI

Byrne P., Becker S., Burgess N. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–37510.1037/0033-295X.114.2.340 PubMed DOI PMC

Cherrier M. M., Mendez M., Perryman K. (2001). Route learning performance in Alzheimer disease patients. Neuropsychiatry Neuropsychol. Behav. Neurol. 14, 159–168 PubMed

Chetelat G., Desgranges B., De La Sayette V., Viader F., Eustache F., Baron J. C. (2002). Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 13, 1939–194310.1097/00001756-200210280-00022 PubMed DOI

Cushman L. A., Duffy C. J. (2007). The sex specificity of navigational strategies in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 21, 122–12910.1097/WAD.0b013e318047df2f PubMed DOI

Cushman L. A., Stein K., Duffy C. J. (2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology 71, 888–89510.1212/01.wnl.0000326262.67613.fe PubMed DOI PMC

deIpolyi A. R., Rankin K. P., Mucke L., Miller B. L., Gorno-Tempini M. L. (2007). Spatial cognition and the human navigation network in AD and MCI. Neurology 69, 986–99710.1212/01.wnl.0000271376.19515.c6 PubMed DOI

Drzezga A., Lautenschlager N., Siebner H., Riemenschneider M., Willoch F., Minoshima S., et al. (2003). Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur. J. Nucl. Med. Mol. Imaging 30, 1104–111310.1007/s00259-003-1194-1 PubMed DOI

Feigenbaum J. D., Morris R. G. (2004). Allocentric versus egocentric spatial memory after unilateral temporal lobectomy in humans. Neuropsychology 18, 462–47210.1037/0894-4105.18.3.462 PubMed DOI

Fennema-Notestine C., Hagler D. J., Jr, McEvoy L. K., Fleisher A. S., Wu E. H., Karow D. S., et al. (2009). Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Hum. Brain Mapp. 30, 3238–325310.1002/hbm.20744 PubMed DOI PMC

Gallistel C. R. (1990). The Organization of Learning. Cambridge: The MIT Press

Gazova I., Vlcek K., Laczo J., Nedelska Z., Hyncicova E., Mokrisova I., et al. (2012). Spatial navigation-a unique window into physiological and pathological aging. Front. Aging Neurosci. 4:16.10.3389/fnagi.2012.00016 PubMed DOI PMC

Hamalainen A., Tervo S., Grau-Olivares M., Niskanen E., Pennanen C., Huuskonen J., et al. (2007). Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment. Neuroimage 37, 1122–113110.1016/j.neuroimage.2007.06.016 PubMed DOI

Hartley T., Bird C. M., Chan D., Cipolotti L., Husain M., Vargha-Khadem F., et al. (2007). The hippocampus is required for short-term topographical memory in humans. Hippocampus 17, 34–4810.1002/hipo.20240 PubMed DOI PMC

Hartley T., Maguire E. A., Spiers H. J., Burgess N. (2003). The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37, 877–88810.1016/S0896-6273(03)00095-3 PubMed DOI

Henderson V. W., Mack W., Williams B. W. (1989). Spatial disorientation in Alzheimer’s disease. Arch. Neurol. 46, 391–39410.1001/archneur.1989.00520400045018 PubMed DOI

Hirao K., Ohnishi T., Hirata Y., Yamashita F., Mori T., Moriguchi Y., et al. (2005). The prediction of rapid conversion to Alzheimer’s disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28, 1014–102110.1016/j.neuroimage.2005.06.066 PubMed DOI

Hort J., Andel R., Mokrisova I., Gazova I., Amlerova J., Valis M., et al. (2014). Effect of donepezil in Alzheimer disease can be measured by a computerized human analog of the morris water maze. Neurodegener. Dis. 13, 192–19610.1159/000355517 PubMed DOI

Hort J., Laczo J., Vyhnalek M., Bojar M., Bures J., Vlcek K. (2007). Spatial navigation deficit in amnestic mild cognitive impairment. Proc. Natl. Acad. Sci. U.S.A. 104, 4042–404710.1073/pnas.0611314104 PubMed DOI PMC

Huang C., Wahlund L. O., Svensson L., Winblad B., Julin P. (2002). Cingulate cortex hypoperfusion predicts Alzheimer’s disease in mild cognitive impairment. BMC Neurol. 2:9.10.1186/1471-2377-2-9 PubMed DOI PMC

Iachini T., Iavarone A., Senese V. P., Ruotolo F., Ruggiero G. (2009). Visuospatial memory in healthy elderly, AD and MCI: a review. Curr. Aging Sci. 2, 43–5910.2174/1874612810902010043 PubMed DOI

Iaria G., Petrides M., Dagher A., Pike B., Bohbot V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J. Neurosci. 23, 5945–5952 PubMed PMC

Igloi K., Doeller C. F., Berthoz A., Rondi-Reig L., Burgess N. (2010). Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc. Natl. Acad. Sci. U.S.A. 107, 14466–1447110.1073/pnas.1004243107 PubMed DOI PMC

Ishiwata A., Sakayori O., Minoshima S., Mizumura S., Kitamura S., Katayama Y. (2006). Preclinical evidence of Alzheimer changes in progressive mild cognitive impairment: a qualitative and quantitative SPECT study. Acta Neurol. Scand. 114, 91–9610.1111/j.1600-0404.2006.00661.x PubMed DOI

Jacobs H. I., Van Boxtel M. P., Uylings H. B., Gronenschild E. H., Verhey F. R., Jolles J. (2011). Atrophy of the parietal lobe in preclinical dementia. Brain Cogn. 75, 154–16310.1016/j.bandc.2010.11.003 PubMed DOI

Johnson K. A., Moran E. K., Becker J. A., Blacker D., Fischman A. J., Albert M. S. (2007). Single photon emission computed tomography perfusion differences in mild cognitive impairment. J. Neurol. Neurosurg. Psychiatr. 78, 240–24710.1136/jnnp.2006.096800 PubMed DOI PMC

Julkunen V., Niskanen E., Muehlboeck S., Pihlajamaki M., Kononen M., Hallikainen M., et al. (2009). Cortical thickness analysis to detect progressive mild cognitive impairment: a reference to Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 28, 404–41210.1159/000256274 PubMed DOI

Kalova E., Vlcek K., Jarolimova E., Bures J. (2005). Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer’s disease: corresponding results in real space tests and computer tests. Behav. Brain Res. 159, 175–18610.1016/j.bbr.2004.10.016 PubMed DOI

Karas G., Sluimer J., Goekoop R., van der Flier W., Rombouts S. A., Vrenken H., et al. (2008). Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR Am. J. Neuroradiol. 29, 944–94910.3174/ajnr.A0949 PubMed DOI PMC

Karow D. S., McEvoy L. K., Fennema-Notestine C., Hagler D. J., Jr, Jennings R. G., Brewer J. B., et al. (2010). Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease. Radiology 256, 932–94210.1148/radiol.10091402 PubMed DOI PMC

Kavcic V., Fernandez R., Logan D., Duffy C. J. (2006). Neurophysiological and perceptual correlates of navigational impairment in Alzheimer’s disease. Brain 129, 736–74610.1093/brain/awh727 PubMed DOI

Kessels R. P., Hendriks M., Schouten J., Van Asselen M., Postma A. (2004). Spatial memory deficits in patients after unilateral selective amygdalohippocampectomy. J. Int. Neuropsychol. Soc. 10, 907–91210.1017/S1355617704106140 PubMed DOI

Kessels R. P., Rijken S., Joosten-Weyn Banningh L. W., Van Schuylenborgh-VAN Es N., Olde Rikkert M. G. (2010). Categorical spatial memory in patients with mild cognitive impairment and Alzheimer dementia: positional versus object-location recall. J. Int. Neuropsychol. Soc. 16, 200–20410.1017/S1355617709990944 PubMed DOI

Laczo J., Vlcek K., Vyhnalek M., Vajnerova O., Ort M., Holmerova I., et al. (2009). Spatial navigation testing discriminates two types of amnestic mild cognitive impairment. Behav. Brain Res. 202, 252–25910.1016/j.bbr.2009.03.041 PubMed DOI

Langbaum J. B., Chen K., Lee W., Reschke C., Bandy D., Fleisher A. S., et al. (2009). Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neuroimage 45, 1107–111610.1016/j.neuroimage.2008.12.072 PubMed DOI PMC

Lee A. C., Buckley M. J., Gaffan D., Emery T., Hodges J. R., Graham K. S. (2006). Differentiating the roles of the hippocampus and perirhinal cortex in processes beyond long-term declarative memory: a double dissociation in dementia. J. Neurosci. 26, 5198–520310.1523/JNEUROSCI.3157-05.2006 PubMed DOI PMC

Lee A. C., Buckley M. J., Pegman S. J., Spiers H., Scahill V. L., Gaffan D., et al. (2005). Specialization in the medial temporal lobe for processing of objects and scenes. Hippocampus 15, 782–79710.1002/hipo.20101 PubMed DOI

Li Y., Rinne J. O., Mosconi L., Pirraglia E., Rusinek H., DeSanti S., et al. (2008). Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 35, 2169–218110.1007/s00259-008-0833-y PubMed DOI PMC

Lithfous S., Dufour A., Despres O. (2013). Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res. Rev. 12, 201–21310.1016/j.arr.2012.04.007 PubMed DOI

Maguire E. A., Burgess N., Donnett J. G., Frackowiak R. S., Frith C. D., O’Keefe J. (1998). Knowing where and getting there: a human navigation network. Science 280, 921–92410.1126/science.280.5365.921 PubMed DOI

Mapstone M., Steffenella T. M., Duffy C. J. (2003). A visuospatial variant of mild cognitive impairment: getting lost between aging and AD. Neurology 60, 802–80810.1212/01.WNL.0000049471.76799.DE PubMed DOI

McDonald C. R., McEvoy L. K., Gharapetian L., Fennema-Notestine C., Hagler D. J., Jr, Holland D., et al. (2009). Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 73, 457–46510.1212/WNL.0b013e3181b16431 PubMed DOI PMC

Mendez M. F., Cherrier M. M. (2003). Agnosia for scenes in topographagnosia. Neuropsychologia 41, 1387–139510.1016/S0028-3932(03)00041-1 PubMed DOI

Milner B., Johnsrude I., Crane J. (1997). Right medial temporal-lobe contribution to object-location memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1469–147410.1098/rstb.1997.0133 PubMed DOI PMC

Monacelli A. M., Cushman L. A., Kavcic V., Duffy C. J. (2003). Spatial disorientation in Alzheimer’s disease: the remembrance of things passed. Neurology 61, 1491–149710.1212/WNL.61.11.1491 PubMed DOI

Morganti F., Stefanini S., Riva G. (2013). From allo- to egocentric spatial ability in early Alzheimer’s disease: a study with virtual reality spatial tasks. Cogn. Neurosci. 4, 171–18010.1080/17588928.2013.854762 PubMed DOI

Morrone M. C., Tosetti M., Montanaro D., Fiorentini A., Cioni G., Burr D. C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nat. Neurosci. 3, 1322–132810.1038/81860 PubMed DOI

Murray M. E., Graff-Radford N. R., Ross O. A., Petersen R. C., Duara R., Dickson D. W. (2011). Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 10, 785–79610.1016/S1474-4422(11)70156-9 PubMed DOI PMC

Nedelska Z., Andel R., Laczo J., Vlcek K., Horinek D., Lisy J., et al. (2012). Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. U.S.A. 109, 2590–259410.1073/pnas.1121588109 PubMed DOI PMC

Nestor P. J., Fryer T. D., Ikeda M., Hodges J. R. (2003a). Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer’s disease). Eur. J. Neurosci. 18, 2663–266710.1046/j.1460-9568.2003.02999.x PubMed DOI

Nestor P. J., Fryer T. D., Smielewski P., Hodges J. R. (2003b). Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann. Neurol. 54, 343–35110.1002/ana.10669 PubMed DOI

Nobili F., De Carli F., Frisoni G. B., Portet F., Verhey F., Rodriguez G., et al. (2009). SPECT predictors of cognitive decline and Alzheimer’s disease in mild cognitive impairment. J. Alzheimers Dis. 17, 761–77210.3233/JAD-2009-1091 PubMed DOI

Nobili F., Frisoni G. B., Portet F., Verhey F., Rodriguez G., Caroli A., et al. (2008). Brain SPECT in subtypes of mild cognitive impairment. Findings from the DESCRIPA multicenter study. J. Neurol. 255, 1344–135310.1007/s00415-008-0897-4 PubMed DOI

O’Brien H. L., Tetewsky S. J., Avery L. M., Cushman L. A., Makous W., Duffy C. J. (2001). Visual mechanisms of spatial disorientation in Alzheimer’s disease. Cereb. Cortex 11, 1083–109210.1093/cercor/11.11.1083 PubMed DOI

O’Keefe J., Nadel L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press

Pappata S., Varrone A., Vicidomini C., Milan G., De Falco C., Sansone V., et al. (2010). SPECT imaging of GABA(A)/benzodiazepine receptors and cerebral perfusion in mild cognitive impairment. Eur. J. Nucl. Med. Mol. Imaging 37, 1156–116310.1007/s00259-010-1409-1 PubMed DOI

Parslow D. M., Rose D., Brooks B., Fleminger S., Gray J. A., Giampietro V., et al. (2004). Allocentric spatial memory activation of the hippocampal formation measured with fMRI. Neuropsychology 18, 450–46110.1037/0894-4105.18.3.450 PubMed DOI

Passini R., Rainville C., Marchand N., Joanette Y. (1995). Wayfinding in dementia of the Alzheimer type: planning abilities. J. Clin. Exp. Neuropsychol. 17, 820–83210.1080/01688639508402431 PubMed DOI

Pengas G., Hodges J. R., Watson P., Nestor P. J. (2010a). Focal posterior cingulate atrophy in incipient Alzheimer’s disease. Neurobiol. Aging 31, 25–3310.1016/j.neurobiolaging.2008.03.014 PubMed DOI

Pengas G., Patterson K., Arnold R. J., Bird C. M., Burgess N., Nestor P. J. (2010b). Lost and found: bespoke memory testing for Alzheimer’s disease and semantic dementia. J. Alzheimers Dis. 21, 1347–136510.3233/JAD-2010-100654 PubMed DOI

Pengas G., Williams G. B., Acosta-Cabronero J., Ash T. W., Hong Y. T., Izquierdo-Garcia D., et al. (2012). The relationship of topographical memory performance to regional neurodegeneration in Alzheimer’s disease. Front. Aging Neurosci. 4:17.10.3389/fnagi.2012.00017 PubMed DOI PMC

Pennanen C., Kivipelto M., Tuomainen S., Hartikainen P., Hanninen T., Laakso M. P., et al. (2004). Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol. Aging 25, 303–31010.1016/S0197-4580(03)00084-8 PubMed DOI

Petersen R. C., Parisi J. E., Dickson D. W., Johnson K. A., Knopman D. S., Boeve B. F., et al. (2006). Neuropathologic features of amnestic mild cognitive impairment. Arch. Neurol. 63, 665–67210.1001/archneur.63.5.665 PubMed DOI

Rainville C., Marchand N., Passini R. (2002). Performances of patients with a dementia of the Alzheimer type in the Standardized Road-Map test of Direction Sense. Neuropsychologia 40, 567–57310.1016/S0028-3932(01)00133-6 PubMed DOI

Risacher S. L., Shen L., West J. D., Kim S., McDonald B. C., Beckett L. A., et al. (2010). Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort. Neurobiol. Aging 31, 1401–141810.1016/j.neurobiolaging.2010.04.029 PubMed DOI PMC

Scahill R. I., Schott J. M., Stevens J. M., Rossor M. N., Fox N. C. (2002). Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc. Natl. Acad. Sci. U.S.A. 99, 4703–470710.1073/pnas.052587399 PubMed DOI PMC

Schmidt-Wilcke T., Poljansky S., Hierlmeier S., Hausner J., Ibach B. (2009). Memory performance correlates with gray matter density in the ento-/perirhinal cortex and posterior hippocampus in patients with mild cognitive impairment and healthy controls – a voxel based morphometry study. Neuroimage 47, 1914–192010.1016/j.neuroimage.2009.04.092 PubMed DOI

Schuff N., Tosun D., Insel P. S., Chiang G. C., Truran D., Aisen P. S., et al. (2012). Nonlinear time course of brain volume loss in cognitively normal and impaired elders. Neurobiol. Aging 33, 845–85510.1016/j.neurobiolaging.2010.07.012 PubMed DOI PMC

Serino S., Riva G. (2013). Getting lost in Alzheimer’s disease: a break in the mental frame syncing. Med. Hypotheses 80, 416–42110.1016/j.mehy.2012.12.031 PubMed DOI

Smith C. D., Chebrolu H., Wekstein D. R., Schmitt F. A., Jicha G. A., Cooper G., et al. (2007). Brain structural alterations before mild cognitive impairment. Neurology 68, 1268–127310.1212/01.wnl.0000259542.54830.34 PubMed DOI

Spulber G., Niskanen E., Macdonald S., Kivipelto M., Padilla D. F., Julkunen V., et al. (2012). Evolution of global and local grey matter atrophy on serial MRI scans during the progression from MCI to AD. Curr. Alzheimer Res. 9, 516–52410.2174/156720512800492486 PubMed DOI

Stepankova K., Fenton A. A., Pastalkova E., Kalina M., Bohbot V. D. (2004). Object-location memory impairment in patients with thermal lesions to the right or left hippocampus. Neuropsychologia 42, 1014–102810.1016/j.neuropsychologia.2004.01.002 PubMed DOI

Tetewsky S. J., Duffy C. J. (1999). Visual loss and getting lost in Alzheimer’s disease. Neurology 52, 958–96510.1212/WNL.52.5.958 PubMed DOI

Vlcek K. (2011). “Spatial navigation impairment in healthy aging and Alzheimer’s disease,” in The Clinical Spectrum of Alzheimer’s Disease – The Charge Toward Comprehensive Diagnostic and Therapeutic Strategies, ed. De La Monte S. (Rijeka, Croatia: InTech; ), 75–100

Weniger G., Ruhleder M., Lange C., Wolf S., Irle E. (2011). Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia 49, 518–52710.1016/j.neuropsychologia.2010.12.031 PubMed DOI

Whitwell J. L., Dickson D. W., Murray M. E., Weigand S. D., Tosakulwong N., Senjem M. L., et al. (2012). Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol. 11, 868–87710.1016/S1474-4422(12)70200-4 PubMed DOI PMC

Whitwell J. L., Shiung M. M., Przybelski S. A., Weigand S. D., Knopman D. S., Boeve B. F., et al. (2008). MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology 70, 512–52010.1212/01.wnl.0000280575.77437.a2 PubMed DOI PMC

Wolbers T., Hegarty M., Buchel C., Loomis J. M. (2008). Spatial updating: how the brain keeps track of changing object locations during observer motion. Nat. Neurosci. 11, 1223–123010.1038/nn.2189 PubMed DOI

Wolbers T., Weiller C., Buchel C. (2004). Neural foundations of emerging route knowledge in complex spatial environments. Brain Res. Cogn. Brain Res. 21, 401–41110.1016/j.cogbrainres.2004.06.013 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...