Role of Mason-Pfizer monkey virus CA-NC spacer peptide-like domain in assembly of immature particles

. 2014 Dec ; 88 (24) : 14148-60. [epub] 20141001

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25275119

UNLABELLED: The hexameric lattice of an immature retroviral particle consists of Gag polyprotein, which is the precursor of all viral structural proteins. Lentiviral and alpharetroviral Gag proteins contain a peptide sequence called the spacer peptide (SP), which is localized between the capsid (CA) and nucleocapsid (NC) domains. SP plays a critical role in intermolecular interactions during the assembly of immature particles of several retroviruses. Published models of supramolecular structures of immature particles suggest that in lentiviruses and alpharetroviruses, SP adopts a rod-like six-helix bundle organization. In contrast, Mason-Pfizer monkey virus (M-PMV), a betaretrovirus that assembles in the cytoplasm, does not contain a distinct SP sequence, and the CA-NC connecting region is not organized into a clear rod-like structure. Nevertheless, the CA-NC junction comprises a sequence critical for assembly of immature M-PMV particles. In the present work, we characterized this region, called the SP-like domain, in detail. We provide biochemical data confirming the critical role of the M-PMV SP-like domain in immature particle assembly, release, processing, and infectivity. Circular dichroism spectroscopy revealed that, in contrast to the SP regions of other retroviruses, a short SP-like domain-derived peptide (SPLP) does not form a purely helical structure in aqueous or helix-promoting solution. Using 8-Å cryo-electron microscopy density maps of immature M-PMV particles, we prepared computational models of the SP-like domain and indicate the structural features required for M-PMV immature particle assembly. IMPORTANCE: Retroviruses such as HIV-1 are of great medical importance. Using Mason-Pfizer monkey virus (M-PMV) as a model retrovirus, we provide biochemical and structural data confirming the general relevance of a short segment of the structural polyprotein Gag for retrovirus assembly and infectivity. Although this segment is critical for assembly of immature particles of lentiviruses, alpharetroviruses, and betaretroviruses, the organization of this domain is strikingly different. A previously published electron microscopic structure of an immature M-PMV particle allowed us to model this important region into the electron density map. The data presented here help explain the different packing of the Gag segments of various retroviruses, such as HIV, Rous sarcoma virus (RSV), and M-PMV. Such knowledge contributes to understanding the importance of this region and its structural flexibility among retroviral species. The region might play a key role in Gag-Gag interactions, leading to different morphological pathways of immature particle assembly.

Zobrazit více v PubMed

Ganser-Pornillos BK, Yeager M, Sundquist WI. 2008. The structural biology of HIV assembly. Curr. Opin. Struct. Biol. 18:203–217. 10.1016/j.sbi.2008.02.001. PubMed DOI PMC

Campos-Olivas R, Newman JL, Summers MF. 2000. Solution structure and dynamics of the Rous sarcoma virus capsid protein and comparison with capsid proteins of other retroviruses. J. Mol. Biol. 296:633–649. 10.1006/jmbi.1999.3475. PubMed DOI

Gamble TR, Yoo SH, Vajdos FF, vonSchwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP. 1997. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278:849–853. 10.1126/science.278.5339.849. PubMed DOI

Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP. 1996. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87:1285–1294. 10.1016/S0092-8674(00)81823-1. PubMed DOI

Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI. 1996. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273:231–235. 10.1126/science.273.5272.231. PubMed DOI

Macek P, Chmelik J, Krizova I, Kaderavek P, Padrta P, Zidek L, Wildova M, Hadravova R, Chaloupkova R, Pichova I, Ruml T, Rumlova M, Sklenar V. 2009. NMR structure of the N-terminal domain of capsid protein from the Mason-Pfizer monkey virus. J. Mol. Biol. 392:100–114. 10.1016/j.jmb.2009.06.029. PubMed DOI

Momany C, Kovari LC, Prongay AJ, Keller W, Gitti RK, Lee BM, Gorbalenya AE, Tong L, McClure J, Ehrlich LS, Summers MF, Carter C, Rossmann MG. 1996. Crystal structure of dimeric HIV-1 capsid protein. Nat. Struct. Mol. Biol. 3:763–770. 10.1038/nsb0996-763. PubMed DOI

Mortuza GB, Haire LF, Stevens A, Smerdon SJ, Stoye JP, Taylor IA. 2004. High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 431:481–485. 10.1038/nature02915. PubMed DOI

Worthylake DK, Wang H, Yoo SH, Sundquist WI, Hill CP. 1999. Structures of the HIV-1 capsid protein dimerization domain at 2.6 angstrom resolution. Acta Crystallogr. Sect. D Biol. Crystallogr. 55:85–92. 10.1107/S0108768198008945. PubMed DOI

Briggs JA, Wilk T, Welker R, Krausslich HG, Fuller SD. 2003. Structural organization of authentic, mature HIV-1 virions and cores. EMBO J. 22:1707–1715. 10.1093/emboj/cdg143. PubMed DOI PMC

Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, Vogt VM, Johnson MC. 2004. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol. 11:672–675. 10.1038/nsmb785. PubMed DOI

Li S, Hill CP, Sundquist WI, Finch JT. 2000. Image reconstructions of helical assemblies of the HIV-1CA protein. Nature 407:409–413. 10.1038/35030177. PubMed DOI

Yeager M, Wilson-Kubalek EM, Weiner SG, Brown PO, Rein A. 1998. Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: implications for retroviral assembly mechanisms. Proc. Natl. Acad. Sci. U. S. A. 95:7299–7304. 10.1073/pnas.95.13.7299. PubMed DOI PMC

Wright ER, Schooler JB, Ding HJ, Kieffer C, Fillmore C, Sundquist WI, Jensen GJ. 2007. Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J. 26:2218–2226. 10.1038/sj.emboj.7601664. PubMed DOI PMC

Pornillos O, Ganser-Pornillos BK, Yeager M. 2011. Atomic-level modelling of the HIV capsid. Nature 469:424–427. 10.1038/nature09640. PubMed DOI PMC

Bharat TA, Davey NE, Ulbrich P, Riches JD, de MA, Rumlova M, Sachse C, Ruml T, Briggs JA. 2012. Structure of the immature retroviral capsid at 8 A resolution by cryo-electron microscopy. Nature 487:385–389. 10.1038/nature11169. PubMed DOI

Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG, Stout CD, Sundquist WI, Hill CP, Yeager M. 2009. X-ray structures of the hexameric building block of the HIV capsid. Cell 137:1282–1292. 10.1016/j.cell.2009.04.063. PubMed DOI PMC

Lanman J, Lam TT, Barnes S, Sakalian M, Emmett MR, Marshall AG, Prevelige PE., Jr 2003. Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. J. Mol. Biol. 325:759–772. 10.1016/S0022-2836(02)01245-7. PubMed DOI

Lanman J, Lam TT, Emmett MR, Marshall AG, Sakalian M, Prevelige PE., Jr 2004. Key interactions in HIV-1 maturation identified by hydrogen-deuterium exchange. Nat. Struct. Mol. Biol. 11:676–677. 10.1038/nsmb790. PubMed DOI

Bohmova K, Hadravova R, Stokrova J, Tuma R, Ruml T, Pichova I, Rumlova M. 2010. Effect of dimerizing domains and basic residues on in vitro and in vivo assembly of Mason-Pfizer monkey virus and human immunodeficiency virus. J. Virol. 84:1977–1988. 10.1128/JVI.02022-09. PubMed DOI PMC

Bowzard JB, Bennett RP, Krishna NK, Ernst SM, Rein A, Wills JW. 1998. Importance of basic residues in the nucleocapsid sequence for retrovirus Gag assembly and complementation rescue. J. Virol. 72:9034–9044. PubMed PMC

Cimarelli A, Sandin S, Hoglund S, Luban J. 2000. Basic residues in human immunodeficiency virus type 1 nucleocapsid promote virion assembly via interaction with RNA. J. Virol. 74:3046–3057. 10.1128/JVI.74.7.3046-3057.2000. PubMed DOI PMC

Sandefur S, Varthakavi V, Spearman P. 1998. The I domain is required for efficient plasma membrane binding of human immunodeficiency virus type 1 Pr55(Gag). J. Virol. 72:2723–2732. PubMed PMC

Sandefur S, Smith RM, Varthakavi V, Spearman P. 2000. Mapping and characterization of the N-terminal I domain of human immunodeficiency virus type 1 Pr55(Gag). J. Virol. 74:7238–7249. 10.1128/JVI.74.16.7238-7249.2000. PubMed DOI PMC

Schmalzbauer E, Strack B, Dannull J, Guehmann S, Moelling K. 1996. Mutations of basic amino acids of NCp7 of human immunodeficiency virus type 1 affect RNA binding in vitro. J. Virol. 70:771–777. PubMed PMC

Yu F, Joshi SM, Ma YM, Kingston RL, Simon MN, Vogt VM. 2001. Characterization of Rous sarcoma virus Gag particles assembled in vitro. J. Virol. 75:2753–2764. 10.1128/JVI.75.6.2753-2764.2001. PubMed DOI PMC

Zhang Y, Qian H, Love Z, Barklis E. 1998. Analysis of the assembly function of the human immunodeficiency virus type 1 Gag protein nucleocapsid domain. J. Virol. 72:1782–1789. PubMed PMC

Muriaux D, Darlix JL. 2010. Properties and functions of the nucleocapsid protein in virus assembly. RNA Biol. 7:744–753. 10.4161/rna.7.6.14065. PubMed DOI PMC

Gorelick RJ, Nigida SM, Jr, Bess JW, Jr, Arthur LO, Henderson LE, Rein A. 1990. Noninfectious human immunodeficiency virus type 1 mutants deficient in genomic RNA. J. Virol. 64:3207–3211. PubMed PMC

Darlix JL, Gabus C, Nugeyre MT, Clavel F, Barre-Sinoussi F. 1990. Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1. J. Mol. Biol. 216:689–699. 10.1016/0022-2836(90)90392-Y. PubMed DOI

Rein A, Henderson LE, Levin JG. 1998. Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem. Sci. 23:297–301. 10.1016/S0968-0004(98)01256-0. PubMed DOI

Carteau S, Batson SC, Poljak L, Mouscadet JF, DeRocquigny H, Darlix JL, Roques BP, Kas E, Auclair C. 1997. Human immunodeficiency virus type 1 nucleocapsid protein specifically stimulates Mg2+-dependent DNA integration in vitro. J. Virol. 71:6225–6229. PubMed PMC

Cheslock SR, Poon DT, Fu W, Rhodes TD, Henderson LE, Nagashima K, McGrath CF, Hu WS. 2003. Charged assembly helix motif in murine leukemia virus capsid: an important region for virus assembly and particle size determination. J. Virol. 77:7058–7066. 10.1128/JVI.77.12.7058-7066.2003. PubMed DOI PMC

Craven RC, Leure-duPree AE, Erdie CR, Wilson CB, Wills JW. 1993. Necessity of the spacer peptide between CA and NC in the Rous sarcoma virus gag protein. J. Virol. 67:6246–6252. PubMed PMC

Keller PW, Johnson MC, Vogt VM. 2008. Mutations in the spacer peptide and adjoining sequences in Rous sarcoma virus Gag lead to tubular budding. J. Virol. 82:6788–6797. 10.1128/JVI.00213-08. PubMed DOI PMC

Krausslich HG, Facke M, Heuser AM, Konvalinka J, Zentgraf H. 1995. The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity. J. Virol. 69:3407–3419. PubMed PMC

Krishna NK, Campbell S, Vogt VM, Wills JW. 1998. Genetic determinants of Rous sarcoma virus particle size. J. Virol. 72:564–577. PubMed PMC

Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA, Swanstrom R. 1994. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J. Virol. 68:8017–8027. PubMed PMC

Taylor GM, Ma L, Vogt VM, Post CB. 2010. NMR relaxation studies of an RNA-binding segment of the rous sarcoma virus gag polyprotein in free and bound states: a model for autoinhibition of assembly. Biochemistry 49:4006–4017. 10.1021/bi902196e. PubMed DOI PMC

Liang C, Hu J, Russell RS, Roldan A, Kleiman L, Wainberg MA. 2002. Characterization of a putative alpha-helix across the capsid-SP1 boundary that is critical for the multimerization of human immunodeficiency virus type 1 gag. J. Virol. 76:11729–11737. 10.1128/JVI.76.22.11729-11737.2002. PubMed DOI PMC

Melamed D, Mark-Danieli M, Kenan-Eichler M, Kraus O, Castiel A, Laham N, Pupko T, Glaser F, Ben-Tal N, Bacharach E. 2004. The conserved carboxy terminus of the capsid domain of human immunodeficiency virus type 1 Gag protein is important for virion assembly and release. J. Virol. 78:9675–9688. 10.1128/JVI.78.18.9675-9688.2004. PubMed DOI PMC

Accola MA, Hoglund S, Gottlinger HG. 1998. A putative alpha-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly. J. Virol. 72:2072–2078. PubMed PMC

Liang C, Hu J, Whitney JB, Kleiman L, Wainberg MA. 2003. A structurally disordered region at the C terminus of capsid plays essential roles in multimerization and membrane binding of the Gag protein of human immunodeficiency virus type 1. J. Virol. 77:1772–1783. 10.1128/JVI.77.3.1772-1783.2003. PubMed DOI PMC

Morellet N, Druillennec S, Lenoir C, Bouaziz S, Roques BP. 2005. Helical structure determined by NMR of the HIV-1 (345-392)Gag sequence, surrounding p2: implications for particle assembly and RNA packaging. Protein Sci. 14:375–386. 10.1110/ps.041087605. PubMed DOI PMC

Han Y, Hou G, Suiter CL, Ahn J, Byeon IJ, Lipton AS, Burton S, Hung I, Gor'kov PL, Gan Z, Brey W, Rice D, Gronenborn AM, Polenova T. 2013. Magic angle spinning NMR reveals sequence-dependent structural plasticity, dynamics, and the spacer peptide 1 conformation in HIV-1 capsid protein assemblies. J. Am. Chem. Soc. 135:17793–17803. 10.1021/ja406907h. PubMed DOI PMC

Deshmukh L, Ghirlando R, Clore GM. 2014. Investigation of the structure and dynamics of the capsid-spacer peptide 1-nucleocapsid fragment of the HIV-1 gag polyprotein by solution NMR spectroscopy. Angew. Chem. 53:1025–1028. 10.1002/anie.201309127. PubMed DOI PMC

Datta SA, Temeselew LG, Crist RM, Soheilian F, Kamata A, Mirro J, Harvin D, Nagashima K, Cachau RE, Rein A. 2011. On the role of the SP1 domain in HIV-1 particle assembly: a molecular switch? J. Virol. 85:4111–4121. 10.1128/JVI.00006-11. PubMed DOI PMC

Bush DL, Monroe EB, Bedwell GJ, Prevelige PE, Jr, Phillips JM, Vogt VM. 2014. Higher-order structure of the Rous sarcoma virus SP assembly domain. J. Virol. 88:5617–5629. 10.1128/JVI.02659-13. PubMed DOI PMC

de Marco A, Davey NE, Ulbrich P, Phillips JM, Lux V, Riches JD, Fuzik T, Ruml T, Krausslich HG, Vogt VM, Briggs JA. 2010. Conserved and variable features of Gag structure and arrangement in immature retrovirus particles. J. Virol. 84:11729–11736. 10.1128/JVI.01423-10. PubMed DOI PMC

Hadravova R, de MA, Ulbrich P, Stokrova J, Dolezal M, Pichova I, Ruml T, Briggs JA, Rumlova M. 2012. In vitro assembly of virus-like particles of a gammaretrovirus, the murine leukemia virus XMRV. J. Virol. 86:1297–1306. 10.1128/JVI.05564-11. PubMed DOI PMC

Bharat TAM, Castillo Menendez LR, Hagen WJH, Lux V, Igonet S, Schorb M, Schur FKM, Kräusslich H-G, Briggs JAG. 2014. Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proc. Natl. Acad. Sci. U. S. A. 111:8233–8238. 10.1073/pnas.1401455111. PubMed DOI PMC

Rumlova-Klikova M, Hunter E, Nermut MV, Pichova I, Ruml T. 2000. Analysis of Mason-Pfizer monkey virus gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J. Virol. 74:8452–8459. 10.1128/JVI.74.18.8452-8459.2000. PubMed DOI PMC

Krizova I, Hadravova R, Stokrova J, Gunterova J, Dolezal M, Ruml T, Rumlova M, Pichova I. 2012. The G-patch domain of Mason-Pfizer monkey virus is a part of reverse transcriptase. J. Virol. 86:1988–1998. 10.1128/JVI.06638-11. PubMed DOI PMC

Rumlova M, Benedikova J, Cubinkova R, Pichova I, Ruml T. 2001. Comparison of classical and affinity purification techniques of Mason-Pfizer monkey virus capsid protein: the alteration of the product by an affinity tag. Protein Expr. Purif. 23:75–83. 10.1006/prep.2001.1488. PubMed DOI

Stansell E, Apkarian R, Haubova S, Diehl WE, Tytler EM, Hunter E. 2007. Basic residues in the Mason-Pfizer monkey virus Gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. J. Virol. 81:8977–8988. 10.1128/JVI.00657-07. PubMed DOI PMC

Newman RM, Hall L, Connole M, Chen GL, Sato S, Yuste E, Diehl W, Hunter E, Kaur A, Miller GM, Johnson WE. 2006. Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5α. Proc. Natl. Acad. Sci. U. S. A. 103:19134–19139. 10.1073/pnas.0605838103. PubMed DOI PMC

Brody BA, Rhee SS, Sommerfelt MA, Hunter E. 1992. A viral protease-mediated cleavage of the transmembrane glycoprotein of Mason-Pfizer monkey virus can be suppressed by mutations within the matrix protein. Proc. Natl. Acad. Sci. U. S. A. 89:3443–3447. 10.1073/pnas.89.8.3443. PubMed DOI PMC

Ulbrich P, Haubova S, Nermut MV, Hunter E, Rumlova M, Ruml T. 2006. Distinct roles for Nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J. Virol. 80:7089–7099. 10.1128/JVI.02694-05. PubMed DOI PMC

Lobley A, Whitmore L, Wallace BA. 2002. DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18:211–212. 10.1093/bioinformatics/18.1.211. PubMed DOI

Sali A, Blundell TL. 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234:779–815. 10.1006/jmbi.1993.1626. PubMed DOI

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–1612. 10.1002/jcc.20084. PubMed DOI

Trabuco LG, Villa E, Mitra K, Frank J, Schulten K. 2008. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683. 10.1016/j.str.2008.03.005. PubMed DOI PMC

Humphrey W, Dalke A, Schulten K. 1996. VMD: visual molecular dynamics. J. Mol. Graphics 14:33–38, 27–38. 10.1016/0263-7855(96)00018-5. PubMed DOI

Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. 2005. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26:1781–1802. 10.1002/jcc.20289. PubMed DOI PMC

MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FT, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102:3586–3616. 10.1021/jp973084f. PubMed DOI

MacKerell AD, Jr, Feig M, Brooks CL., 3rd 2004. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25:1400–1415. 10.1002/jcc.20065. PubMed DOI

Rumlova M, Ruml T, Pohl J, Pichova I. 2003. Specific in vitro cleavage of Mason-Pfizer monkey virus capsid protein: evidence for a potential role of retroviral protease in early stages of infection. Virology 310:310–318. 10.1016/S0042-6822(03)00128-4. PubMed DOI

Lee S-K, Potempa M, Swanstrom R. 2012. The choreography of HIV-1 proteolytic processing and virion assembly. J. Biol. Chem. 287:40867–40874. 10.1074/jbc.R112.399444. PubMed DOI PMC

Monroe EB, Kang S, Kyere SK, Li R, Prevelige PE., Jr 2010. Hydrogen/deuterium exchange analysis of HIV-1 capsid assembly and maturation. Structure 18:1483–1491. 10.1016/j.str.2010.08.016. PubMed DOI PMC

Fu W, Rein A. 1993. Maturation of dimeric viral RNA of Moloney murine leukemia virus. J. Virol. 67:5443–5449. PubMed PMC

Fu W, Gorelick RJ, Rein A. 1994. Characterization of human immunodeficiency virus type 1 dimeric RNA from wild-type and protease-defective virions. J. Virol. 68:5013–5018. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...