Next-generation deep sequencing improves detection of BCR-ABL1 kinase domain mutations emerging under tyrosine kinase inhibitor treatment of chronic myeloid leukemia patients in chronic phase
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25367136
PubMed Central
PMC11823503
DOI
10.1007/s00432-014-1845-6
Knihovny.cz E-zdroje
- MeSH
- bcr-abl fúzní proteiny genetika MeSH
- benzamidy terapeutické užití MeSH
- chronická myeloidní leukemie farmakoterapie genetika MeSH
- dospělí MeSH
- imatinib mesylát MeSH
- inhibitory proteinkinas terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- mutace účinky léků MeSH
- piperaziny terapeutické užití MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- protinádorové látky terapeutické užití MeSH
- pyrimidiny terapeutické užití MeSH
- retrospektivní studie MeSH
- senioři MeSH
- tyrosinkinasy antagonisté a inhibitory MeSH
- výpočetní biologie MeSH
- vysoce účinné nukleotidové sekvenování * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bcr-abl fúzní proteiny MeSH
- benzamidy MeSH
- imatinib mesylát MeSH
- inhibitory proteinkinas MeSH
- piperaziny MeSH
- protinádorové látky MeSH
- pyrimidiny MeSH
- tyrosinkinasy MeSH
PURPOSE: Here, we studied whether amplicon next-generation deep sequencing (NGS) could improve the detection of emerging BCR-ABL1 kinase domain mutations in chronic phase chronic myeloid leukemia (CML) patients under tyrosine kinase inhibitor (TKI) treatment and discussed the clinical relevance of such sensitive mutational detection. METHODS: For NGS data evaluation including extraction of biologically relevant low-level variants from background error noise, we established and applied a robust and versatile bioinformatics approach. RESULTS: Results from a retrospective longitudinal analysis of 135 samples of 15 CML patients showed that NGS could have revealed emerging resistant mutants 2-11 months earlier than conventional sequencing. Interestingly, in cases who later failed first-line imatinib treatment, NGS revealed that TKI-resistant mutations were already detectable at the time of major or deeper molecular response. Identification of emerging mutations by NGS was mirrored by BCR-ABL1 transcript level expressed either fluctuations around 0.1 %(IS) or by slight transcript level increase. NGS also allowed tracing mutations that emerged during second-line TKI therapy back to the time of switchover. Compound mutants could be detected in three cases, but were not found to outcompete single mutants. CONCLUSIONS: This work points out, that next-generation deep sequencing, coupled with a robust bioinformatics approach for mutation calling, may be just in place to ensure reliable detection of emerging BCR-ABL1 mutations, allowing early therapy switch and selection of the most appropriate therapy. Further, prospective assessment of how to best integrate NGS in the molecular monitoring and clinical decision algorithms is warranted.
Zobrazit více v PubMed
Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF et al (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia. Blood 122:872–874 PubMed PMC
Bracho MA, Moya A, Barrio E (1998) Contribution of Taq polymerase-induced errors to the estimation of RNA virus diversity. J Gen Virol 79:2921–2928 PubMed
Campbell PJ, Pleasance ED, Stephens PJ, Dicks E, Rance R, Goodhead I et al (2008) Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. PNAS 105:13081–13086 PubMed PMC
Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880 PubMed
Grossmann V, Roller A, Klein HU, Weissmann S, Kern W, Haferlach C et al (2013) Robustness of amplicon deep sequencing underlines its utility in clinical applications. J Mol Diagn 15:473–484 PubMed
Khorashad JS, de Lavallade H, Apperley JF, Milojkovic D, Reid AG, Bua M et al (2008) Finding of kinase domain mutation in patients with chronic phase chronic myeloid leukemia responding to imatinib may identify those at high risk of disease progression. J Clin Oncol 26:4806–4813 PubMed PMC
Kohlmann A, Martinelli G, Alikian M, Artusi V, Auber B, Belickova M, et al (2013) The Interlaboratory Robustness Of Next-Generation Sequencing (IRON) Study Phase II: deep-sequencing analyses of hematological malignancies performed in 8,867 cases by an international network involving 27 laboratories [abstract]. 2013 annual meeting abstracts, Blood 122:743
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–383 PubMed PMC
Müller MC, Cross NC, Erben P, Schenk T, Hanfstein B, Ernst T et al (2009) Harmonization of molecular monitoring of CML therapy in Europe. Leukemia 23:1957–1963 PubMed
Parker WT, Lawrence RM, Ho M, Irwin DL, Scott HS, Hughes TP et al (2011) Sensitive detection of BCR-ABL11 mutations in patients with chronic myeloid leukemia after imatinib resistance is predictive of outcome during subsequent therapy. J Clin Oncol 29:4250–4259 PubMed
Polakova KM, Polivkova V, Rulcova J, Klamova H, Jurcek T, Dvorakova D et al (2010) Constant BCR-ABL1 transcript level > or = 0.1% (IS) in patients with CML responding to imatinib with complete cytogenetic remission may indicate mutation analysis. Exp Hematol 38:20–26 PubMed
Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA (2012) Detection of ultra-rare mutation by next-generation sequencing. PNAS 109:14508–14513 PubMed PMC
Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G et al (2011) BCR-ABL1 kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 118:1208–1215 PubMed
Soverini S, De Benedittis C, Polakova KM, Brouckova A, Horner D, Iacono M et al (2013) Unraveling the complexity of tyrosine kinase inhibitor-resistant populations by ultra-deep sequencing of the BCR-ABL1 kinase domain. Blood 122:1364–1648 PubMed
Zabriskie MS, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE et al (2014) BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive Leukemia. Cancer Cell. doi:10.1016/j.ccr.2014.07.006 PubMed PMC