Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 AI069057
NIAID NIH HHS - United States
AI69057
NIAID NIH HHS - United States
R01 AI014102
NIAID NIH HHS - United States
095201
Wellcome Trust - United Kingdom
AI014102
NIAID NIH HHS - United States
104111
Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
R37 AI014102
NIAID NIH HHS - United States
G0600129
Medical Research Council - United Kingdom
PubMed
25568942
PubMed Central
PMC4288722
DOI
10.1371/journal.pntd.0003404
PII: PNTD-D-14-01163
Knihovny.cz E-zdroje
- MeSH
- analýza hlavních komponent MeSH
- fylogeneze * MeSH
- genom protozoální * MeSH
- jednonukleotidový polymorfismus MeSH
- mikrosatelitní repetice MeSH
- protozoální proteiny genetika metabolismus MeSH
- regulace genové exprese MeSH
- Trypanosoma klasifikace genetika MeSH
- trypanosomové variantní povrchové glykoproteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- protozoální proteiny MeSH
- trypanosomové variantní povrchové glykoproteiny MeSH
Two key biological features distinguish Trypanosoma evansi from the T. brucei group: independence from the tsetse fly as obligatory vector, and independence from the need for functional mitochondrial DNA (kinetoplast or kDNA). In an effort to better understand the molecular causes and consequences of these differences, we sequenced the genome of an akinetoplastic T. evansi strain from China and compared it to the T. b. brucei reference strain. The annotated T. evansi genome shows extensive similarity to the reference, with 94.9% of the predicted T. b. brucei coding sequences (CDS) having an ortholog in T. evansi, and 94.6% of the non-repetitive orthologs having a nucleotide identity of 95% or greater. Interestingly, several procyclin-associated genes (PAGs) were disrupted or not found in this T. evansi strain, suggesting a selective loss of function in the absence of the insect life-cycle stage. Surprisingly, orthologous sequences were found in T. evansi for all 978 nuclear CDS predicted to represent the mitochondrial proteome in T. brucei, although a small number of these may have lost functionality. Consistent with previous results, the F1FO-ATP synthase γ subunit was found to have an A281 deletion, which is involved in generation of a mitochondrial membrane potential in the absence of kDNA. Candidates for CDS that are absent from the reference genome were identified in supplementary de novo assemblies of T. evansi reads. Phylogenetic analyses show that the sequenced strain belongs to a dominant group of clonal T. evansi strains with worldwide distribution that also includes isolates classified as T. equiperdum. At least three other types of T. evansi or T. equiperdum have emerged independently. Overall, the elucidation of the T. evansi genome sequence reveals extensive similarity of T. brucei and supports the contention that T. evansi should be classified as a subspecies of T. brucei.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
Centre of Immunity Infection and Evolution University of Edinburgh Edinburgh United Kingdom
Seattle Biomedical Research Institute Seattle United States of America
Swiss Tropical and Public Health Institute Basel Switzerland
Zobrazit více v PubMed
Desquesnes M, Holzmuller P, Lai DH, Dargantes A, Lun ZR, et al. (2013) Trypanosoma evansi and Surra: A Review and Perspectives on Origin, History, Distribution, Taxonomy, Morphology, Hosts, and Pathogenic Effects. Biomed Res Int 2013: 1–20. PubMed PMC
Joshi PP, Shegokar VR, Powar RM, Herder S, Katti R, et al. (2005) Human trypanosomiasis caused by Trypanosoma evansi in India: the first case report. Am J Trop Med Hyg 73: 491–495. PubMed
Brun R, Hecker H, Lun ZR (1998) Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phylogenetic relationship (a review). Vet Parasitol 79: 95–107. PubMed
Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukeš J (2008) Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc Natl Acad Sci U S A 105: 1999–2004. PubMed PMC
Claes F, Buscher P, Touratier L, Goddeeris BM (2005) Trypanosoma equiperdum: master of disguise or historical mistake? Trends Parasitol 21: 316–321. PubMed
Ventura RM, Takeda GF, Silva RA, Nunes VL, Buck GA, et al. (2002) Genetic relatedness among Trypanosoma evansi stocks by random amplification of polymorphic DNA and evaluation of a synapomorphic DNA fragment for species-specific diagnosis. Int J Parasitol 32: 53–63. PubMed
Desquesnes M, Dargantes A, Lai DH, Lun ZR, Holzmuller P, et al. (2013) Trypanosoma evansi and surra: a review and perspectives on transmission, epidemiology and control, impact, and zoonotic aspects. Biomed Res Int 2013: 321237. PubMed PMC
Schnaufer A, Domingo GJ, Stuart KD (2002) Natural and induced dyskinetoplastid trypanosomatids: How to live without mitochondrial DNA. Int J Parasitol 32: 1071–1084. PubMed
Bringaud F, Riviere L, Coustou V (2006) Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 149: 1–9. PubMed
Jensen RE, Simpson L, Englund PT (2008) What happens when Trypanosoma brucei leaves Africa. Trends Parasitol 24: 428–431. PubMed PMC
Lun ZR, Lai DH, Li FJ, Lukeš J, Ayala FJ (2010) Trypanosoma brucei: two steps to spread out from Africa. Trends Parasitol 26: 424–427. PubMed
Liu B, Liu Y, Motyka SA, Agbo EC, Englund PT (2005) Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol 21: 363–369. PubMed
Stuart KD, Schnaufer A, Ernst NL, Panigrahi AK (2005) Complex management: RNA editing in trypanosomes. Trends Biochem Sci 30: 97–105. PubMed
Aphasizhev R, Aphasizheva I (2011) Mitochondrial RNA processing in trypanosomes. Res Microbiol 162: 655–663. PubMed PMC
Hajduk S, Ochsenreiter T (2010) RNA editing in kinetoplastids. RNA Biol 7: 229–236. PubMed
Bhat GJ, Koslowsky DJ, Feagin JE, Smiley BL, Stuart K (1990) An extensively edited mitochondrial transcript in kinetoplastids encodes a protein homologous to ATPase subunit 6. Cell 61: 885–894. PubMed
Hashimi H, Benkovicová V, Cermáková P, Lai DH, Horváth A, et al. (2010) The assembly of F(1)F(O)-ATP synthase is disrupted upon interference of RNA editing in Trypanosoma brucei. Int J Parasitol 40: 45–54. PubMed
Zíková A, Schnaufer A, Dalley RA, Panigrahi AK, Stuart KD (2009) The F0F1-ATP Synthase Complex Contains Novel Subunits and Is Essential for Procyclic Trypanosoma brucei. PLOS Pathogens 5: 1–15. PubMed PMC
Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K (2005) The F(1)-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J 24: 4029–4040. PubMed PMC
Dean S, Gould MK, Dewar CE, Schnaufer AC (2013) Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. Proc Natl Acad Sci U S A 110: 14741–14746. PubMed PMC
Lun ZR, Brun R, Gibson W (1992) Kinetoplast DNA and molecular karyotypes of Trypanosoma evansi and Trypanosoma equiperdum from China. Mol Biochem Parasitol 50: 189–196. PubMed
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Lennard NJ, et al. (2005) The genome of the African trypanosome, Trypanosoma brucei. Science 309: 416–422. PubMed
Lanham SM, Godfrey DG (1970) Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol 28: 521–534. PubMed
Sambrook J. and Russell, D W. (2001) Molecular Cloning: A Laboratory Manual, Third Edition. Cold Spring Harbor Laboratory Press.
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380. PubMed PMC
Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, et al. (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21: 3422–3423. PubMed
Otto TD, Dillon GP, Degrave WS, Berriman M (2011) RATT: Rapid Annotation Transfer Tool. Nucleic Acids Res 39: e57. PubMed PMC
Aggarwal G, Worthey E, McDonagh P, Myler PJ (2003) Importing statistical measures in Artemis enhances gene identification in Leishmania Genome Project. BMC Bioinformatics 4: 23. PubMed PMC
Blankenberg D, Taylor J, Schenck I, He J, Zhang Y, et al. (2007) A framework for collaborative analysis of ENCODE data: making large-scale analyses biologist-friendly. Genome Res 17: 960–964. PubMed PMC
Melville SE, Leech V, Gerrard CS, Tait A, Blackwell JM (1998) The molecular karyotype of the megabase chromosomes of Trypanosoma brucei and the assignment of chromosome markers. Mol Biochem Parasitol 94: 155–173. PubMed
Rovai L, Tripp C, Stuart K, Simpson L (1992) Recurrent polymorphisms in small chromosomes of Leishmania tarentolae after nutrient stress or subcloning. Mol Biochem Parasitol 50: 115–126. PubMed
Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39: W29–W37. PubMed PMC
Jackson AP, Sanders M, Berry A, McQuillan J, Aslett MA, et al. (2010) The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis. PLoS Negl Trop Dis 4: e658. PubMed PMC
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. PubMed
Jackson AP, Berry A, Aslett M, Allison HC, Burton P, et al. (2012) Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species. Proc Natl Acad Sci U S A 109: 3416–3421. PubMed PMC
Zhang Z, Li J, Yu J (2006) Computing Ka and Ks with a consideration of unequal transitional substitutions. BMC Evol Biol 6: 44. PubMed PMC
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882. PubMed PMC
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. PubMed
Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, et al. (2009) TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25: 126–127. PubMed PMC
Balmer O, Beadell JS, Gibson W, Caccone A (2011) Phylogeography and taxonomy of Trypanosoma brucei. PLoS Negl Trop Dis 5: e961. PubMed PMC
Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 1657–1659. PubMed
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539–542. PubMed PMC
Lanfear R, Calcott B, Ho SY, Guindon S (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29: 1695–1701. PubMed
Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160–174. PubMed
Balmer O, Palma C, MacLeod A, Caccone A (2006) Characterization of di-, tri-, and tetranucleotide microsatellite markers with perfect repeats for Trypanosoma brucei and related species. Mol Ecol Notes 6: 508–510. PubMed PMC
Melville SE, Leech V, Navarro M, Cross GA (2000) The molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427. Mol Biochem Parasitol 111: 261–273. PubMed
Callejas S, Leech V, Reitter C, Melville S (2006) Hemizygous subtelomeres of an African trypanosome chromosome may account for over 75% of chromosome length. Genome Res 16: 1109–1118. PubMed PMC
Witola WH, Tsuda A, Inoue N, Ohashi K, Onuma M (2005) Acquired resistance to berenil in a cloned isolate of Trypanosoma evansi is associated with upregulation of a novel gene, TeDR40. Parasitol 131: 635–646. PubMed
Haenni S, Renggli CK, Fragoso CM, Oberle M, Roditi I (2006) The procyclin-associated genes of Trypanosoma brucei are not essential for cyclical transmission by tsetse. Mol Biochem Parasitol 150: 144–156. PubMed
Roditi I, Furger A, Ruepp S, Schurch N, Butikofer P (1998) Unravelling the procyclin coat of Trypanosoma brucei. Mol Biochem Parasitol 91: 117–130. PubMed
Vassella E, Oberle M, Urwyler S, Renggli CK, Studer E, et al. (2009) Major surface glycoproteins of insect forms of Trypanosoma brucei are not essential for cyclical transmission by tsetse. PLoS ONE 4: e4493. PubMed PMC
Vassella E, Acosta-Serrano A, Studer E, Lee SH, Englund PT, et al. (2001) Multiple procyclin isoforms are expressed differentially during the development of insect forms of Trypanosoma brucei. J Mol Biol 312: 597–607. PubMed
Koenig-Martin E, Yamage M, Roditi I (1992) A procyclin-associated gene in Trypanosoma brucei encodes a polypeptide related to ESAG 6 and 7 proteins. Mol Biochem Parasitol 55: 135–146. PubMed
Berberof M, Pays A, Lips S, Tebabi P, Pays E (1996) Characterization of a transcription terminator of the procyclin PARP A unit of Trypanosoma brucei. Mol Cell Biol 16: 914–924. PubMed PMC
Liniger M, Bodenmuller K, Pays E, Gallati S, Roditi I (2001) Overlapping sense and antisense transcription units in Trypanosoma brucei. Mol Microbiol 40: 869–878. PubMed
König E, Delius H, Carrington M, Williams RO, Roditi I (1989) Duplication and transcription of procyclin genes in Trypanosoma brucei. Nucl Acids Res 17: 8727–8739. PubMed PMC
Acosta-Serrano A, Cole RN, Mehlert A, Lee MG, Ferguson MA, et al. (1999) The procyclin repertoire of Trypanosoma brucei. Identification and structural characterization of the Glu-Pro-rich polypeptides. J Biol Chem 274: 29763–29771. PubMed
Liniger M, Urwyler S, Studer E, Oberle M, Renggli CK, et al. (2004) Role of the N-terminal domains of EP and GPEET procyclins in membrane targeting and the establishment of midgut infections by Trypanosoma brucei. Mol Biochem Parasitol 137: 247–251. PubMed
Jensen BC, Sivam D, Kifer CT, Myler PJ, Parsons M (2009) Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics 10: 482. PubMed PMC
Panigrahi AK, Ogata Y, Zikova A, Anupama A, Dalley RA, et al. (2009) A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9: 434–450. PubMed PMC
Acestor N, Panigrahi AK, Ogata Y, Anupama A, Stuart KD (2009) Protein composition of Trypanosoma brucei mitochondrial membranes. Proteomics 9: 5497–5508. PubMed PMC
Zíková A, Panigrahi AK, Dalley RA, Acestor N, Anupama A, et al. (2008) Trypanosoma brucei mitochondrial ribosomes: affinity purification and component identification by mass spectrometry. Mol Cell Proteomics 7: 1286–1296. PubMed PMC
Beck K, Acestor N, Schulfer A, Anupama A, Carnes J, et al. (2013) Trypanosoma brucei Tb927.2.6100 is an essential protein associated with kinetoplast DNA. Eukaryot Cell 12: 970–978. PubMed PMC
Lejon V, Claes F, Verloo D, Maina M, Urakawa T, et al. (2005) Recombinant RoTat 1.2 variable surface glycoprotein as antigen for diagnosis of Trypanosoma evansi in dromedary camels. Int J Parasitol 35: 455–460. PubMed
Roldan A, Comini MA, Crispo M, Krauth-Siegel RL (2011) Lipoamide dehydrogenase is essential for both bloodstream and procyclic Trypanosoma brucei. Mol Microbiol 81: 623–639. PubMed
Shiba T, Kido Y, Sakamoto K, Inaoka DK, Tsuge C, et al. (2013) Structure of the trypanosome cyanide-insensitive alternative oxidase. Proc Natl Acad Sci U S A 110: 4580–4585. PubMed PMC
Lai DH, Poropat E, Pravia C, Landoni M, Couto AS, et al. (2014) Solanesyl diphosphate synthase, an enzyme of the ubiquinone synthetic pathway, is required throughout the life cycle of Trypanosoma brucei. Eukaryot Cell 13: 320–328. PubMed PMC
Stephens JL, Lee SH, Paul KS, Englund PT (2007) Mitochondrial fatty acid synthesis in Trypanosoma brucei. J Biol Chem 282: 4427–4436. PubMed
Mazet M, Morand P, Biran M, Bouyssou G, Courtois P, et al. (2013) Revisiting the central metabolism of the bloodstream forms of Trypanosoma brucei: production of acetate in the mitochondrion is essential for parasite viability. PLoS Negl Trop Dis 7: e2587. PubMed PMC
Alfonzo JD, Lukeš J (2011) Assembling Fe/S-clusters and modifying tRNAs: ancient co-factors meet ancient adaptors. Trends Parasitol 27: 235–238. PubMed PMC
Pusnik M, Small I, Read LK, Fabbro T, Schneider A (2007) Pentatricopeptide Repeat Proteins in Trypanosoma brucei Function in Mitochondrial Ribosomes. Mol Cell Biol 27: 6876–6888. PubMed PMC
Domingo GJ, Palazzo SS, Wang B, Panicucci B, Salavati R, et al. (2003) Dyskinetoplastic Trypanosoma brucei contain functional editing complexes. Eukaryot Cell 2: 569–577. PubMed PMC
Nolan DP, Voorheis HP (1992) The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase. Eur J Biochem 209: 207–216. PubMed
Vercesi AE, Docampo R, Moreno SNJ (1992) Energization-dependent Ca2+ accumulation in Trypanosoma brucei bloodstream and procyclic trypomastigotes mitochondria. Mol Biochem Parasitol 56: 251–258. PubMed
Surve S, Heestand M, Panicucci B, Schnaufer A, Parsons M (2012) Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Eukaryot Cell 11: 183–193. PubMed PMC
Turner CM, Melville SE, Tait A (1997) A proposal for karyotype nomenclature in Trypanosoma brucei. Parasitol Today 13: 5–6. PubMed
Wincker P, Ravel C, Blaineau C, Pages M, Jauffret Y, et al. (1996) The Leishmania genome comprises 36 chromosomes conserved across widely divergent human pathogenic species. Nucl Acids Res 24: 1688–1694. PubMed PMC
Henriksson J, Porcel B, Rydaker M, Ruiz A, Sabaj V, et al. (1995) Chromosome specific markers reveal conserved linkage groups in spite of extensive chromosomal size variation in Trypanosoma cruzi. Mol Biochem Parasitol 73: 63–74. PubMed
Tran T, Claes F, Verloo D, De GH, Buscher P (2009) Towards a new reference test for surra in camels. Clin Vaccine Immunol 16: 999–1002. PubMed PMC
Li FJ, Lai DH, Lukeš J, Chen XG, Lun ZR (2006) Doubts about Trypanosoma equiperdum strains classed as Trypanosoma brucei or Trypanosoma evansi. Trends Parasitol 22: 55–56. PubMed
Hoare, C A. (1972) The trypanosomes of mammals. A zoological monograph. Oxford: Blackwell Scientific Publications.
Claes F, Agbo EC, Radwanska M, Te Pas MF, Baltz T, et al. (2003) How does Trypanosoma equiperdum fit into the Trypanozoon group? A cluster analysis by RAPD and multiplex-endonuclease genotyping approach. Parasitol 126: 425–431. PubMed
Capewell P, Cooper A, Duffy CW, Tait A, Turner CM, et al. (2013) Human and animal Trypanosomes in Cote d'Ivoire form a single breeding population. PLoS ONE 8: e67852. PubMed PMC
Gibson W (2007) Resolution of the species problem in African trypanosomes. Int J Parasitol 37: 829–838. PubMed
Hey J (2001) The mind of the species problem. Trends Ecol Evol 16: 326–329. PubMed
Desquesnes M, Biteau-Coroller F, Bouyer J, Dia ML, Foil L (2009) Development of a mathematical model for mechanical transmission of trypanosomes and other pathogens of cattle transmitted by tabanids. Int J Parasitol 39: 333–346. PubMed
MacGregor P, Szoor B, Savill NJ, Matthews KR (2012) Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act. Nat Rev Microbiol 10: 431–438. PubMed PMC
Mony BM, MacGregor P, Ivens A, Rojas F, Cowton A, et al. (2014) Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature 505: 681–685. PubMed PMC
Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L, et al. (2011) High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res 21: 915–924. PubMed PMC
Borst P, Fase-Fowler F, Gibson WC (1987) Kinetoplast DNA of Trypanosoma evansi. Mol Biochem Parasitol 23: 31–38. PubMed
Njiru ZK, Constantine CC, Masiga DK, Reid SA, Thompson RC, et al. (2006) Characterization of Trypanosoma evansi type B. Infect Genet Evol. 6: 292–300. PubMed
Bajyana Songa E, Hamers R (1988) A card agglutination test (CATT) for veterinary use based on an early VAT RoTat 1/2 of Trypanosoma evansi. Ann Soc Belg Med Trop 68: 233–240. PubMed
Claes F, Radwanska M, Urakawa T, Majiwa PA, Goddeeris B, et al. (2004) Variable Surface Glycoprotein RoTat 1.2 PCR as a specific diagnostic tool for the detection of Trypanosoma evansi infections. Kinetoplastid Biol Dis 3: 3. PubMed PMC
Urakawa T, Verloo D, Moens L, Buscher P, Majiwa PA (2001) Trypanosoma evansi: cloning and expression in Spodoptera frugiperda [correction of fugiperda] insect cells of the diagnostic antigen RoTat1.2. Exp Parasitol 99: 181–189. PubMed
Verloo D, Holland W, My LN, Thanh NG, Tam PT, et al. (2000) Comparison of serological tests for Trypanosoma evansi natural infections in water buffaloes from north Vietnam. Vet Parasitol 92: 87–96. PubMed
Ngaira JM, Olembo NK, Njagi EN, Ngeranwa JJ (2005) The detection of non-RoTat 1.2 Trypanosoma evansi. Exp Parasitol 110: 30–38. PubMed
Suramin action in African trypanosomes involves a RuvB-like DNA helicase
Biochemical and genotyping analyses of camels (Camelus dromedaries) trypanosomiasis in North Africa
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen
Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life