A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25687974
DOI
10.1016/j.bbamem.2015.02.007
PII: S0005-2736(15)00047-4
Knihovny.cz E-zdroje
- Klíčová slova
- Eukaryotic Trk, Homology modeling, K(+)-translocation, Molecular dynamics, Saccharomyces cerevisiae, Selectivity filter,
- MeSH
- buněčná membrána chemie metabolismus MeSH
- draslík metabolismus MeSH
- gating iontového kanálu * MeSH
- glycin MeSH
- kinetika MeSH
- konformace proteinů MeSH
- konzervovaná sekvence MeSH
- kyselina asparagová MeSH
- lysin MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- mutageneze cílená MeSH
- permeabilita buněčné membrány MeSH
- proteiny přenášející kationty chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- sbalování proteinů MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky MeSH
- stabilita proteinů MeSH
- výpočetní biologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- draslík MeSH
- glycin MeSH
- kyselina asparagová MeSH
- lysin MeSH
- proteiny přenášející kationty MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- TRK1 protein, S cerevisiae MeSH Prohlížeč
Potassium ion (K+) uptake in yeast is mediated mainly by the Trk1/2 proteins that enable cells to survive on external K+ concentration as low as a few μM. Fungal Trks are related to prokaryotic TRK and Ktr and plant HKT K+ transport systems. Overall sequence similarity is very low, thus requiring experimental verification of homology models. Here a refined structural model of the Saccharomyces cerevisiae Trk1 is presented that was obtained by combining homology modeling, molecular dynamics simulation and experimental verification through functional analysis of mutants. Structural models and experimental results showed that glycines within the selectivity filter, conserved among the K-channel/transporter family, are not only important for protein function, but are also required for correct folding/membrane targeting. A conserved aspartic acid in the PA helix (D79) and a lysine in the M2D helix (K1147) were proposed earlier to interact. Our results suggested individual roles of these residues in folding, structural integrity and function. While mutations of D79 completely abolished protein folding, mutations at position 1147 were tolerated to some extent. Intriguingly, a secondary interaction of D79 with R76 could enhance folding/stability of Trk1 and enable a fraction of Trk1[K1147A] to fold. The part of the ion permeation path containing the selectivity filter is shaped similar to that of ion channels. However below the selectivity filter it is obstructed or regulated by a proline containing loop. The presented model could provide the structural basis for addressing the long standing question if Trk1 is a passive or active ion-translocation system.
Institute of Pharmacology Medical University of Vienna Vienna Austria
Molecular Bioenergetics Institute of Cellular and Molecular Botany University of Bonn Bonn Germany
Citace poskytuje Crossref.org
Dimerisation of the Yeast K+ Translocation Protein Trk1 Depends on the K+ Concentration
The study of conformational changes in photosystem II during a charge separation