Feasibility and reproducibility of neurochemical profile quantification in the human hippocampus at 3 T
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
5KL2TR113
NCATS NIH HHS - United States
P41 EB015894
NIBIB NIH HHS - United States
P41 RR008079
NCRR NIH HHS - United States
UL1 TR000114
NCATS NIH HHS - United States
KL2 TR000113
NCATS NIH HHS - United States
P30 NS076408
NINDS NIH HHS - United States
R01 NS035192
NINDS NIH HHS - United States
R01 NS070815
NINDS NIH HHS - United States
PubMed
25904240
PubMed Central
PMC4454404
DOI
10.1002/nbm.3309
Knihovny.cz E-zdroje
- Klíčová slova
- 3 T, MRS, coefficient of variation, human hippocampus, metabolites, quantification precision, reproducibility, segmentation,
- MeSH
- algoritmy MeSH
- biopolymery metabolismus MeSH
- dospělí MeSH
- hipokampus anatomie a histologie metabolismus MeSH
- lidé MeSH
- molekulární zobrazování metody MeSH
- protonová magnetická rezonanční spektroskopie metody MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- studie proveditelnosti MeSH
- tkáňová distribuce MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- biopolymery MeSH
Hippocampal dysfunction is known to be associated with several neurological and neuropsychiatric disorders such as Alzheimer's disease, epilepsy, schizophrenia and depression; therefore, there has been significant clinical interest in studying hippocampal neurochemistry. However, the hippocampus is a challenging region to study using (1) H MRS, hence the use of MRS for clinical research in this region has been limited. Our goal was therefore to investigate the feasibility of obtaining high-quality hippocampal spectra that allow reliable quantification of a neurochemical profile and to establish inter-session reproducibility of hippocampal MRS, including reproducibility of voxel placement, spectral quality and neurochemical concentrations. Ten healthy volunteers were scanned in two consecutive sessions using a standard clinical 3 T MR scanner. Neurochemical profiles were obtained with a short-echo (T(E) = 28 ms) semi-LASER localization sequence from a relatively small (~4 mL) voxel that covered about 62% of the hippocampal volume as calculated from segmentation of T1 -weighted images. Voxel composition was highly reproducible between sessions, with test-retest coefficients of variation (CVs) of 3.5% and 7.5% for gray and white matter volume fraction, respectively. Excellent signal-to-noise ratio (~54 based on the N-acetylaspartate (NAA) methyl peak in non-apodized spectra) and linewidths (~9 Hz for water) were achieved reproducibly in all subjects. The spectral quality allowed quantification of NAA, total choline, total creatine, myo-inositol and glutamate with high scan-rescan reproducibility (CV ≤ 6%) and quantification precision (Cramér-Rao lower bound, CRLB < 9%). Four other metabolites, including glutathione and glucose, were quantified with scan-rescan CV below 20%. Therefore, the highly optimized, short-echo semi-LASER sequence together with FASTMAP shimming substantially improved the reproducibility and number of quantifiable metabolites relative to prior reports. In addition, the between-session variation in metabolite concentrations, as well as CRLB, was lower than the between-subject variation of the concentrations for most metabolites, indicating that the method has the sensitivity to detect inter-individual differences in the healthy brain.
1st Department of Neurology Masaryk University and St Anne's Teaching Hospital Brno Czech Republic
Division of Biostatistics School of Public Health University of Minnesota Minneapolis MN USA
Oxford Centre for Functional MRI of the Brain John Radcliffe Hospital University of Oxford Oxford UK
Zobrazit více v PubMed
Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annu Rev Neurosci. 2004;27:279–306. PubMed
Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev. 1991;12(2):118–134. PubMed
Dixon RM, Bradley KM, Budge MM, Styles P, Smith AD. Longitudinal quantitative proton magnetic resonance spectroscopy of the hippocampus in Alzheimer's disease. Brain. 2002;125(Pt 10):2332–2341. PubMed
Riederer F, Bittsanský M, Schmidt C, Mlynárik V, Baumgartner C, Moser E, Serles W. 1H magnetic resonance spectroscopy at 3 T in cryptogenic and mesial temporal lobe epilepsy. NMR Biomed. 2006;19(5):544–553. PubMed
Heckers S. Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus. 2001;11(5):520–528. PubMed
den Heijer T, Vermeer SE, van Dijk EJ, Prins ND, Koudstaal PJ, Hofman A, Breteler MMB. Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia. 2003;46(12):1604–1610. PubMed
Erickson K, Voss M, Prakash R, Basak C, Szabo A, Chaddock L, Kim J, Heo S, Alves H, White S, Wojcicki T, Mailey E, Vieira V, Martin S, Pence B, Woods J, McAuley E, Kramer A. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–3022. PubMed PMC
Bartha R, Smith M, Rupsingh R, Rylett J, Wells JL, Borrie MJ. High field (1)H MRS of the hippocampus after donepezil treatment in Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(3):786–793. PubMed
Oz G, Alger J, Barker P, Bartha R, Bizzi A, Boesch C, Bolan P, Brindle K, Cudalbu C, Dincer A, Dydak U, Emir U, Frahm J, Gonzalez R, Gruber S, Gruetter R, Gupta R, Heerschap A, Henning A, Hetherington H, Howe F, Huppi P, Hurd R, Grp MC. Clinical Proton MR Spectroscopy in Central Nervous System Disorders. Radiology. 2014;270(3):658–679. PubMed PMC
Willmann O, Wennberg R, May T, Woermann FG, Pohlmann-Eden B. The role of 1H magnetic resonance spectroscopy in pre-operative evaluation for epilepsy surgery. A meta-analysis. Epilepsy Res. 2006;71(2-3):149–158. PubMed
Marsman A, van den Heuvel MP, Klomp DW, Kahn RS, Luijten PR, Hulshoff Pol HE. Glutamate in schizophrenia: a focused review and meta-analysis of 1H-MRS studies. Schizophr Bull. 2013;39(1):120–129. PubMed PMC
Choi CG, Frahm J. Localized proton MRS of the human hippocampus: metabolite concentrations and relaxation times. Magn Reson Med. 1999;41(1):204–207. PubMed
Reyngoudt H, Claeys T, Vlerick L, Verleden S, Acou M, Deblaere K, De Deene Y, Audenaert K, Goethals I, Achten E. Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: a 1H-MRS study. Eur J Radiol. 2012;81(3):e223–231. PubMed
Brazdil M, Marecek R, Fojtikova D, Mikl M, Kuba R, Krupa P, Rektor I. Correlation study of optimized voxel-based morphometry and (1)H MRS in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Hum Brain Mapp. 2009;30(4):1226–1235. PubMed PMC
Kraguljac NV, White DM, Reid MA, Lahti AC. Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiatry.;2013;70(12):1294–1302. PubMed PMC
Geurts JJ, Barkhof F, Castelijns JA, Uitdehaag BM, Polman CH, Pouwels PJ. Quantitative 1H-MRS of healthy human cortex, hippocampus, and thalamus: metabolite concentrations, quantification precision, and reproducibility. J Magn Reson Imaging. 2004;20(3):366–371. PubMed
Hammen T, Stadlbauer A, Tomandl B, Ganslandt O, Pauli E, Huk W, Neundorfer B, Stefan H. Short TE single-voxel 1H-MR spectroscopy of hippocampal structures in healthy adults at 1.5 Tesla--how reproducible are the results? NMR Biomed. 2005;18(3):195–201. PubMed
Terpstra M, Emir UE, Eberly LE, Öz G. Test-retest repeatability of human neurochemical profiles measured at 3 versus 7 T [abstr].. Proceedings of the 20th Meeting of the International Society for Magnetic Resonance in Medicine; Berkeley, USA. 2012.p. 1739.
Venkatraman TN, Hamer RM, Perkins DO, Song AW, Lieberman JA, Steen RG. Single-voxel 1H PRESS at 4.0 T: precision and variability of measurements in anterior cingulate and hippocampus. NMR Biomed. 2006;19(4):484–491. PubMed
van der Kouwe AJ, Balasubramanian M, Busa EA, Fishl B. Automatic prospective spectroscopy VOI placement based on brain segmentation [abstr.].. Proceedings of the 15th Meeting of the International Society for Magnetic Resonance Imaging; Berlin, Germany. 2007.p. 773.
Hetherington HP, Hamid H, Kulas J, Ling G, Bandak F, de Lanerolle NC, Pan JW. MRSI of the medial temporal lobe at 7 T in explosive blast mild traumatic brain injury. Magn Reson Med. 2014;71(4):1358–1367. PubMed PMC
Prinsen H, Heerschap A, Bleijenberg G, Zwarts MJ, Leer JW, van Asten JJ, van der Graaf M, Rijpkema M, van Laarhoven HW. Magnetic resonance spectroscopic imaging and volumetric measurements of the brain in patients with postcancer fatigue: a randomized controlled trial. PLoS One. 2013;8(9):e74638. PubMed PMC
Oz G, Tkac I. Short-Echo, Single-Shot, Full-Intensity Proton Magnetic Resonance Spectroscopy for Neurochemical Profiling at 4 T: Validation in the Cerebellum and Brainstem. Magn Reson Med. 2011;65(4):901–910. PubMed PMC
Scheenen TW, Klomp DW, Wijnen JP, Heerschap A. Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med. 2008;59(1):1–6. PubMed
Deelchand DK, Adanyeguh IM, Emir UE, Nguyen TM, Valabregue R, Henry PG, Mochel F, Oz G. Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single-voxel MRS at 3T. Magn Reson Med. 2014 PubMed PMC
Arslanoglu A, Bonekamp D, Barker PB, Horská A. Quantitative proton MR spectroscopic imaging of the mesial temporal lobe. J Magn Reson Imaging. 2004;20(5):772–778. PubMed
Gruetter R, Tkac I. Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med. 2000;43(2):319–323. PubMed
Tkac I, Starcuk Z, Choi I, Gruetter R. In vivo H-1 NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson in Med. 1999;41(4):649–656. PubMed
Natt O, Bezkorovaynyy V, Michaelis T, Frahm J. Use of phased array coils for a determination of absolute metabolite concentrations. Magn Reson Med. 2005;53(1):3–8. PubMed
Ridler TW, Calvard S. Picture Thresholding Using an Iterative Selection Method. Ieee Transactions on Systems Man and Cybernetics. 1978;8(8):630–632.
Morey RA, Petty CM, Xu Y, Hayes JP, Wagner HR, Lewis DV, LaBar KS, Styner M, McCarthy G. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage. 2009;45(3):855–866. PubMed PMC
Klose U. In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med. 1990;14(1):26–30. PubMed
Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30:672–679. PubMed
Deelchand DK, Henry PG, Uğurbil K, Marjańska M. Measurement of transverse relaxation times of J-coupled metabolites in the human visual cortex at 4 T. Magn Reson Med. 2012;67(4):891–897. PubMed PMC
Schaller B, Xin L, Gruetter R. Is the macromolecule signal tissue-specific in healthy human brain? A (1)H MRS study at 7 Tesla in the occipital lobe. Magn Reson Med. 2014;72(4):934–940. PubMed
Marjańska M, Auerbach EJ, Valabrègue R, Van de Moortele PF, Adriany G, Garwood M. Localized 1H NMR spectroscopy in different regions of human brain in vivo at 7 T: T2 relaxation times and concentrations of cerebral metabolites. NMR Biomed. 2012;25(2):332–339. PubMed PMC
Rupsingh R, Borrie M, Smith M, Wells JL, Bartha R. Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging. 2011;32(5):802–810. PubMed
Bartha R, Michaeli S, Merkle H, Adriany G, Andersen P, Chen W, Ugurbil K, Garwood M. In vivo 1H2O T2+ measurement in the human occipital lobe at 4T and 7T by Carr-Purcell MRI: detection of microscopic susceptibility contrast. Magn Reson Med. 2002;47(4):742–750. PubMed
Tkac I, Oz G, Adriany G, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7T. Magn Reson Med. 2009;62(4):868–879. PubMed PMC
Marjanska M, Emir UE, Deelchand DK, Terpstra M. Faster metabolite (1)H transverse relaxation in the elder human brain. PLoS One. 2013;8(10):e77572. PubMed PMC
Penner J, Rupsingh R, Smith M, Wells JL, Borrie MJ, Bartha R. Increased glutamate in the hippocampus after galantamine treatment for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(1):104–110. PubMed
Allaili N, Marjanska M, Auerrbach EJ, Bardinet E, Fossati P, Valabregue R, Lehericy S. Single voxel 1H spectroscopy in the human hippocampus at 3T using LASER: A reproducibility study [abstr.]. Proceedings of the 18th Meeting of the International Society for Magnetic Resonance in Medicine; Stockholm, Sweden. 2010.p. 939.
Hippocampal Neurochemical Profile and Glucose Transport Kinetics in Patients With Type 1 Diabetes