Paxillin-dependent regulation of IGF2 and H19 gene cluster expression

. 2015 Aug 15 ; 128 (16) : 3106-16. [epub] 20150626

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26116569

Paxillin (PXN) is a focal adhesion protein that has been implicated in signal transduction from the extracellular matrix. Recently, it has been shown to shuttle between the cytoplasm and the nucleus. When inside the nucleus, paxillin promotes cell proliferation. Here, we introduce paxillin as a transcriptional regulator of IGF2 and H19 genes. It does not affect the allelic expression of the two genes; rather, it regulates long-range chromosomal interactions between the IGF2 or H19 promoter and a shared distal enhancer on an active allele. Specifically, paxillin stimulates the interaction between the enhancer and the IGF2 promoter, thus activating IGF2 gene transcription, whereas it restrains the interaction between the enhancer and the H19 promoter, downregulating the H19 gene. We found that paxillin interacts with cohesin and the mediator complex, which have been shown to mediate long-range chromosomal looping. We propose that these interactions occur at the IGF2 and H19 gene cluster and are involved in the formation of loops between the IGF2 and H19 promoters and the enhancer, and thus the expression of the corresponding genes. These observations contribute to a mechanistic explanation of the role of paxillin in proliferation and fetal development.

Zobrazit více v PubMed

Arney K. L. (2003). H19 and Igf2 – enhancing the confusion? Trends Genet. 19, 17-23. 10.1016/S0168-9525(02)00004-5 PubMed DOI

Bartolomei M. S. and Ferguson-Smith A. C. (2011). Mammalian genomic imprinting. Cold Spring Harb. Perspect. Biol. 3, a002592 10.1101/cshperspect.a002592 PubMed DOI PMC

Bell A. C. and Felsenfeld G. (2000). Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482-485. 10.1038/35013100 PubMed DOI

Brannan C. I., Dees E. C., Ingram R. S. and Tilghman S. M. (1990). The product of the H19 gene may function as an RNA. Mol. Cell. Biol. 10, 28-36. PubMed PMC

Brown M. C. and Turner C. E. (2004). Paxillin: adapting to change. Physiol. Rev. 84, 1315-1339. 10.1152/physrev.00002.2004 PubMed DOI

Brunkow M. E. and Tilghman S. M. (1991). Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev. 5, 1092-1101. 10.1101/gad.5.6.1092 PubMed DOI

Cai X. and Cullen B. R. (2007). The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13, 313-316. 10.1261/rna.351707 PubMed DOI PMC

Conaway R. C. and Conaway J. W. (2011). Function and regulation of the Mediator complex. Curr. Opin. Genet. Dev. 21, 225-230. 10.1016/j.gde.2011.01.013 PubMed DOI PMC

Constancia M., Dean W., Lopes S., Moore T., Kelsey G. and Reik W. (2000). Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19. Nat. Genet. 26, 203-206. 10.1038/79930 PubMed DOI

Cui H., Horon I. L., Ohlsson R., Hamilton S. R. and Feinberg A. P. (1998). Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat. Med. 4, 1276-1280. 10.1038/3260 PubMed DOI

Davis S. M. (1994). Developmental regulation of genomic imprinting of the IGF2 gene in human liver. Cancer Res. 64, 2560-2562. PubMed

DeChiara T. M., Robertson E. J. and Efstratiadis A. (1991). Parental imprinting of the mouse insulin-like growth factor II gene. Cell 4, 849-859. 10.1016/0092-8674(91)90513-X PubMed DOI

Dekker J., Rippe K., Dekker M. and Kleckner N. (2002). Capturing chromosome conformation. Science 295, 1306-1311. 10.1126/science.1067799 PubMed DOI

Delaval K. and Feil R. (2004). Epigenetic regulation of mammalian genomic imprinting. Curr. Opin. Genet. Dev. 14, 188-195. 10.1016/j.gde.2004.01.005 PubMed DOI

Dey B. K., Pfeifer K. and Dutta A. (2014). The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev. 28, 491-501. 10.1101/gad.234419.113 PubMed DOI PMC

Dong J.-M., Lau L.-S., Ng Y.-W., Lim L. and Manser E. (2009). Paxillin nuclear-cytoplasmic localization is regulated by phosphorylation of the LD4 motif: evidence that nuclear paxillin promotes cell proliferation. Biochem. J. 418, 173-184. 10.1042/BJ20080170 PubMed DOI

Dzijak R., Yildirim S., Kahle M., Novák P., Hnilicová J., Venit T. and Hozák P. (2012). Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner. PLoS ONE 7, e30529 10.1371/journal.pone.0030529 PubMed DOI PMC

Gabory A., Jammes H. and Dandolo L. (2010). The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 32, 473-480. 10.1002/bies.200900170 PubMed DOI

Gruber S., Haering C. H. and Nasmyth K. (2003). Chromosomal cohesin forms a ring. Cell 112, 765-777. 10.1016/S0092-8674(03)00162-4 PubMed DOI

Guacci V., Koshland D. and Strunnikov A. (1997). A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47-57. 10.1016/S0092-8674(01)80008-8 PubMed DOI PMC

Hadjur S., Williams L. M., Ryan N. K., Cobb B. S., Sexton T., Fraser P., Fisher A. G. and Merkenschlager M. (2009). Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460, 410-413. 10.1038/nature08079 PubMed DOI PMC

Haering C. H., Löwe J., Hochwagen A. and Nasmyth K. (2002). Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9, 773-788. 10.1016/S1097-2765(02)00515-4 PubMed DOI

Hagège H., Klous P., Braem C., Splinter E., Dekker J., Cathala G., de Laat W. and Forné T. (2007). Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat. Protoc. 2, 1722-1733. 10.1038/nprot.2007.243 PubMed DOI

Hark A. T., Schoenherr C. J., Katz D. J., Ingram R. S., Levorse J. M. and Tilghman S. M. (2000). CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486-489. 10.1038/35013106 PubMed DOI

Hayatsu H., Wataya Y., Kai K. and Iida S. (1970). Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry 9, 2858-2865. PubMed

Hervy M., Hoffman L. and Beckerle M. C. (2006). From the membrane to the nucleus and back again: bifunctional focal adhesion proteins. Curr. Opin. Cell Biol. 18, 524-532. 10.1016/j.ceb.2006.08.006 PubMed DOI

Hofmann W.-K., Takeuchi S., Frantzen M. A., Hoelzer D. and Koeffler H. P. (2002). Loss of genomic imprinting of insulin-like growth factor 2 is strongly associated with cellular proliferation in normal hematopoietic cells. Exp. Hematol. 30, 318-323. 10.1016/S0301-472X(01)00797-4 PubMed DOI

Holthuizen P., van der Lee F. M., Ikejiri K., Yamamoto M. and Sussenbach J. S. (1990). Identification and initial characterization of a fourth leader exon and promoter of the human IGF-II gene. Biochim. Biophys. Acta 1087, 341-343. 10.1016/0167-4781(90)90010-Y PubMed DOI

Ishida M. and Moore G. E. (2013). The role of imprinted genes in humans. Mol. Aspects Med. 34, 826-840. 10.1016/j.mam.2012.06.009 PubMed DOI

Ishihara K., Hatano N., Furuumi H., Kato R., Iwaki T., Miura K., Jinno Y. and Sasaki H. (2000). Comparative genomic sequencing identifies novel tissue-specific enhancers and sequence elements for methylation-sensitive factors implicated in Igf2/H19 imprinting. Genome Res. 10, 664-671. 10.1101/gr.10.5.664 PubMed DOI PMC

Ishihara K., Oshimura M. and Nakao M. (2006). CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol. Cell 23, 733-742. 10.1016/j.molcel.2006.08.008 PubMed DOI

Kaffer C. R., Srivastava M., Park K. Y., Ives E., Hsieh S., Batlle J., Grinberg A., Huang S. P. and Pfeifer K. (2000). A transcriptional insulator at the imprinted H19/Igf2 locus. Genes Dev. 14, 1908-1919. PubMed PMC

Kagey M. H., Newman J. J., Bilodeau S., Zhan Y., Orlando D. A., van Berkum N. L., Ebmeier C. C., Goossens J., Rahl P. B., Levine S. S. et al. (2010). Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430-435. 10.1038/nature09380 PubMed DOI PMC

Kalscheuer V. M., Mariman E. C., Schepens M. T., Rehder H. and Ropers H. H. (1993). The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nat. Genet. 5, 74-78. 10.1038/ng0993-74 PubMed DOI

Keniry A., Oxley D., Monnier P., Kyba M., Dandolo L., Smits G. and Reik W. (2012). The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat. Cell Biol. 14, 659-665. 10.1038/ncb2521 PubMed DOI PMC

Kopf E., Bibi O., Ayesh S., Tykocinski M., Vitner K., Looijenga L. H. J., de Groot N. and Hochberg A. (1998). The effect of retinoic acid on the activation of the human H19 promoter by a 3′ downstream region. FEBS Lett. 432, 123-127. 10.1016/S0014-5793(98)00841-2 PubMed DOI

Kurukuti S., Tiwari V. K., Tavoosidana G., Pugacheva E., Murrell A., Zhao Z., Lobanenkov V., Reik W. and Ohlsson R. (2006). CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl. Acad. Sci. USA 103, 10684-10689. 10.1073/pnas.0600326103 PubMed DOI PMC

Leighton P. A., Saam J. R., Ingram R. S., Stewart C. L. and Tilghman S. M. (1995a). An enhancer deletion affects both H19 and Igf2 expression. Genes Dev. 9, 2079-2089. 10.1101/gad.9.17.2079 PubMed DOI

Leighton P. A., Ingram R. S., Eggenschwiler J., Efstratiadis A. and Tilghman S. M. (1995b). Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34-39. 10.1038/375034a0 PubMed DOI

Li X., Adam G., Cui H., Sandstedt B., Ohlsson R. and Ekstrom T. J. (1995). Expression, promoter usage and parental imprinting status of insulin-like growth factor II (IGF2) in human hepatoblastoma: uncoupling of IGF2 and H19 imprinting. Oncogene 11, 221-229. PubMed

Liu Q., Yang B., Xie X., Wei L., Liu W., Yang W., Ge Y., Zhu Q., Zhang J., Jiang L. et al. (2014). Vigilin interacts with CCCTC-binding factor (CTCF) and is involved in CTCF-dependent regulation of the imprinted genes Igf2 and H19. FEBS J. 281, 2713-2725. 10.1111/febs.12816 PubMed DOI

Long L. and Spear B. T. (2004). FoxA proteins regulate H19 endoderm enhancer E1 and exhibit developmental changes in enhancer binding in vivo. Mol. Cell. Biol. 24, 9601-9609. 10.1128/MCB.24.21.9601-9609.2004 PubMed DOI PMC

Losada A., Hirano M. and Hirano T. (1998). Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986-1997. 10.1101/gad.12.13.1986 PubMed DOI PMC

MacDonald W. A. (2012). Epigenetic mechanisms of genomic imprinting: common themes in the regulation of imprinted regions in mammals, plants, and insects. Genet. Res. Int. 2012, 585024 10.1155/2012/585024 PubMed DOI PMC

Malik S. and Roeder R. G. (2010). The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 11, 761-772. 10.1038/nrg2901 PubMed DOI PMC

Michaelis C., Ciosk R. and Nasmyth K. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35-45. 10.1016/S0092-8674(01)80007-6 PubMed DOI

Milligan L., Forné T., Antoine E., Weber M., Hémonnot B., Dandolo L., Brunel C. and Cathala G. (2002). Turnover of primary transcripts is a major step in the regulation of mouse H19 gene expression. EMBO Rep. 3, 774-779. 10.1093/embo-reports/kvf142 PubMed DOI PMC

Mineno J., Okamoto S., Ando T., Sato M., Chono H., Izu H., Takayama M., Asada K., Mirochnitchenko O., Inouye M. et al. (2006). The expression profile of microRNAs in mouse embryos. Nucleic Acids Res. 34, 1765-1771. 10.1093/nar/gkl096 PubMed DOI PMC

Murrell A., Heeson S. and Reik W. (2004). Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet. 36, 889-893. 10.1038/ng1402 PubMed DOI

Nativio R., Wendt K. S., Ito Y., Huddleston J. E., Uribe-Lewis S., Woodfine K., Krueger C., Reik W., Peters J.-M. and Murrell A. (2009). Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet. 5, e1000739 10.1371/journal.pgen.1000739 PubMed DOI PMC

Naumova N., Smith E. M., Zhan Y. and Dekker J. (2012). Analysis of long-range chromatin interactions using Chromosome Conformation Capture. Methods 58, 192-203. 10.1016/j.ymeth.2012.07.022 PubMed DOI PMC

Ohana P., Kopf E., Bibi O., Ayesh S., Schneider T., Laster M., Tykocinski M., de Groot N. and Hochberg A. (1999). The expression of the H19 gene and its function in human bladder carcinoma cell lines. FEBS Lett. 454, 81-84. 10.1016/S0014-5793(99)00780-2 PubMed DOI

Ohlsson R., Hedborg F., Holmgren L., Walsh C. and Ekström T. J. (1994). Overlapping patterns of IGF2 and H19 expression during human development: biallelic IGF2 expression correlates with a lack of H19 expression. Development 2, 361-368. PubMed

Pannetier M. and Feil R. (2007). Epigenetic stability of embryonic stem cells and developmental potential. Trends Biotechnol. 25, 556-562. 10.1016/j.tibtech.2007.09.003 PubMed DOI

Parelho V., Hadjur S., Spivakov M., Leleu M., Sauer S., Gregson H. C., Jarmuz A., Canzonetta C., Webster Z., Nesterova T. et al. (2008). Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422-433. 10.1016/j.cell.2008.01.011 PubMed DOI

Ratajczak M. Z. (2012). Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey’ to cancerogenesis. Folia Histochem. Cytobiol. 50, 171-179. 10.5603/FHC.2012.0026 PubMed DOI

Reik W. and Walter J. (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21-32. 10.1038/35047554 PubMed DOI

Sen A., De Castro I., DeFranco D. B., Deng F.-M., Melamed J., Kapur P., Raj G. V., Rossi R. and Hammes S. R. (2012). Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. J. Clin. Invest. 122, 2469-2481. 10.1172/JCI62044 PubMed DOI PMC

Singer C., Rasmussen A., Smith H. S., Lippman M. E., Lynch H. T. and Cullen K. J. (1995). Malignant breast epithelium selects for insulin-like growth factor II expression in breast stroma: evidence for paracrine function. Cancer Res. 55, 2448-2454. PubMed

Stodůlková E., Novák P., Deininger S.-O., Man P., Čapková J., Kavan D., Ivašková E. and Flieger M. (2008). LC MALDI-TOF MS/MS and LC ESI FTMS analyses of HLA-B27 associated peptides isolated from peripheral blood cells. Immunol. Lett. 116, 79-85. 10.1016/j.imlet.2007.11.011 PubMed DOI

Sussenbach J. S. (1989). The gene structure of the insulin-like growth factor family. Prog. Growth Factor Res. 1, 33-48. 10.1016/0955-2235(89)90040-9 PubMed DOI

Takeda S., Kondo M., Kumada T., Koshikawa T., Ueda R., Nishio M., Osada H., Suzuki H., Nagatake M., Washimi O. et al. (1996). Allelic-expression imbalance of the insulin-like growth factor 2 gene in hepatocellular carcinoma and underlying disease. Oncogene 12, 1589-1592. PubMed

van Dijk M. A., van Schaik F. M. A., Bootsma H. J., Holthuizen P. and Sussenbach J. S. (1991). Initial characterization of the four promoters of the human insulin-like growth factor II gene. Mol. Cell. Endocrinol. 81, 81-94. 10.1016/0303-7207(91)90207-9 PubMed DOI

Varrault A., Gueydan C., Delalbre A., Bellmann A., Houssami S., Aknin C., Severac D., Chotard L., Kahli M., Le Digarcher A. et al. (2006). Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev. Cell 11, 711-722. 10.1016/j.devcel.2006.09.003 PubMed DOI

Wang Q., Carroll J. S. and Brown M. (2005). Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol. Cell 19, 631-642. 10.1016/j.molcel.2005.07.018 PubMed DOI

Wendt K. S., Yoshida K., Itoh T., Bando M., Koch B., Schirghuber E., Tsutsumi S., Nagae G., Ishihara K., Mishiro T. et al. (2008). Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796-801. 10.1038/nature06634 PubMed DOI

Woods A. J., Roberts M. S., Choudhary J., Barry S. T., Mazaki Y., Sabe H., Morley S. J., Critchley D. R. and Norman J. C. (2002). Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells. J. Biol. Chem. 277, 6428-6437. 10.1074/jbc.M109446200 PubMed DOI

Yao H., Brick K., Evrard Y., Xiao T., Camerini-Otero R. D. and Felsenfeld G. (2010). Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. Genes Dev. 24, 2543-2555. 10.1101/gad.1967810 PubMed DOI PMC

Yoo-Warren H., Pachnis V., Ingram R. S. and Tilghman S. M. (1988). Two regulatory domains flank the mouse H19 gene. Mol. Cell. Biol. 8, 4707-4715. PubMed PMC

Zamir E. and Geiger B. (2001). Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114, 3583-3590. PubMed

Zhang L., Zhou W., Velculescu V. E., Kern S. E., Hruban R. H., Hamilton S. R., Vogelstein B. and Kinzler K. W. (1997). Gene expression profiles in normal and cancer cells. Science 276, 1268-1272. 10.1126/science.276.5316.1268 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Focal Adhesion Protein Vinculin Is Required for Proper Meiotic Progression during Mouse Spermatogenesis

. 2022 Jun 23 ; 11 (13) : . [epub] 20220623

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...