Test-retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3T and 7T
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, hodnotící studie, časopisecké články, validační studie
Grantová podpora
R01 AG039396
NIA NIH HHS - United States
P41 EB015894
NIBIB NIH HHS - United States
P30 NS076408
NINDS NIH HHS - United States
R01 NS070815
NINDS NIH HHS - United States
T32 GM008471
NIGMS NIH HHS - United States
PubMed
26502373
PubMed Central
PMC4846596
DOI
10.1002/mrm.26022
Knihovny.cz E-zdroje
- Klíčová slova
- 3 Tesla, 7 Tesla, coefficient of variation, spectroscopy, test-retest reproducibility,
- MeSH
- algoritmy * MeSH
- dospělí MeSH
- interpretace obrazu počítačem metody MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie metody MeSH
- magnetická rezonanční tomografie přístrojové vybavení metody MeSH
- molekulární zobrazování přístrojové vybavení metody MeSH
- mozek anatomie a histologie metabolismus MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- tkáňová distribuce MeSH
- vylepšení obrazu metody MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- srovnávací studie MeSH
- validační studie MeSH
PURPOSE: To determine the test-retest reproducibility of neurochemical concentrations obtained with a highly optimized, short-echo, single-voxel proton MR spectroscopy (MRS) pulse sequence at 3T and 7T using state-of-the-art hardware. METHODS: A semi-LASER sequence (echo time = 26-28 ms) was used to acquire spectra from the posterior cingulate and cerebellum at 3T and 7T from six healthy volunteers who were scanned four times weekly on both scanners. Spectra were quantified with LCModel. RESULTS: More neurochemicals were quantified with mean Cramér-Rao lower bounds (CRLBs) ≤20% at 7T than at 3T despite comparable frequency-domain signal-to-noise ratio. Whereas CRLBs were lower at 7T (P < 0.05), between-session coefficients of variance (CVs) were comparable at the two fields with 64 transients. Five metabolites were quantified with between-session CVs ≤5% at both fields. Analysis of subspectra showed that a minimum achievable CV was reached with a lower number of transients at 7T for multiple metabolites and that between-session CVs were lower at 7T than at 3T with fewer than 64 transients. CONCLUSION: State-of-the-art MRS methodology allows excellent reproducibility for many metabolites with 5-min data averaging on clinical 3T hardware. Sensitivity and resolution advantages at 7T are important for weakly represented metabolites, short acquisitions, and small volumes of interest. Magn Reson Med 76:1083-1091, 2016. © 2015 Wiley Periodicals, Inc.
Zobrazit více v PubMed
Öz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, Bolan PJ, Brindle KM, Cudalbu C, Dinçer A, Dydak U, Emir UE, Frahm J, González RG, Gruber S, Gruetter R, Gupta RK, Heerschap A, Henning A, Hetherington HP, Howe FA, Hüppi PS, Hurd RE, Kantarci K, Klomp DW, Kreis R, Kruiskamp MJ, Leach MO, Lin AP, Luijten PR, Marjańska M, Maudsley AA, Meyerhoff DJ, Mountford CE, Nelson SJ, Pamir MN, Pan JW, Peet AC, Poptani H, Posse S, Pouwels PJ, Ratai EM, Ross BD, Scheenen TW, Schuster C, Smith IC, Soher BJ, Tkáč I, Vigneron DB, Kauppinen RA Group TMC. Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014;270(3):658–679. PubMed PMC
Tkáč I, Öz G, Adriany G, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7T. Magn Reson Med. 2009;62(4):868–879. PubMed PMC
Mekle R, Mlynárik V, Gambarota G, Hergt M, Krueger G, Gruetter R. MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn Reson Med. 2009;61(6):1279–1285. PubMed
Deelchand DK, Iltis I, Henry PG. Improved quantification precision of human brain short echo-time 1H magnetic resonance spectroscopy at high magnetic field: A simulation study. Magn Reson Med. 2014;72(1):20–25. PubMed PMC
Brooks WM, Friedman SD, Stidley CA. Reproducibility of 1H-MRS in vivo. Magn Reson Med. 1999;41(1):193–197. PubMed
Schirmer T, Auer DP. On the reliability of quantitative clinical magnetic resonance spectroscopy of the human brain. NMR Biomed. 2000;13(1):28–36. PubMed
Bartha R, Drost DJ, Menon RS, Williamson PC. Comparison of the quantification precision of human short echo time 1H spectroscopy at 1.5 and 4.0 Tesla. Magn Reson Med. 2000;44(2):185–192. PubMed
Geurts JJ, Barkhof F, Castelijns JA, Uitdehaag BM, Polman CH, Pouwels PJ. Quantitative 1H-MRS of healthy human cortex, hippocampus, and thalamus: metabolite concentrations, quantification precision, and reproducibility. J Magn Reson Imaging. 2004;20(3):366–371. PubMed
Hammen T, Stadlbauer A, Tomandl B, Ganslandt O, Pauli E, Huk W, Neundorfer B, Stefan H. Short TE single-voxel 1H-MR spectroscopy of hippocampal structures in healthy adults at 1.5 Tesla--how reproducible are the results? NMR Biomed. 2005;18(3):195–201. PubMed
Träber F, Block W, Freymann N, Gür O, Kucinski T, Hammen T, Ende G, Pilatus U, Hampel H, Schild HH, Heun R, Jessen F. A multicenter reproducibility study of single-voxel 1H-MRS of the medial temporal lobe. Eur Radiol. 2006;16(5):1096–1103. PubMed
Stephenson MC, Gunner F, Napolitano A, Greenhaff PL, Macdonald IA, Saeed N, Vennart W, Francis ST, Morris PG. Applications of multi-nuclear magnetic resonance spectroscopy at 7T. World J Radiol. 2011;3(4):105–113. PubMed PMC
Kirov II, George IC, Jayawickrama N, Babb JS, Perry NN, Gonen O. Longitudinal inter- and intra-individual human brain metabolic quantification over 3 years with proton MR spectroscopy at 3 T. Magn Reson Med. 2012;67:27–33. PubMed PMC
Pradhan S, Bonekamp S, Gillen JS, Rowland LM, Wijtenburg SA, Edden RA, Barker PB. Comparison of single voxel brain MRS AT 3T and 7T using 32-channel head coils. Magn Reson Imaging. 2015;33(8):1013–1018. PubMed PMC
Deelchand DK, Adanyeguh IM, Emir UE, Nguyen TM, Valabregue R, Henry PG, Mochel F, Öz G. Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single voxel MRS at 3 T. Magn Reson Med. 2015;73(5):1718–1725. PubMed PMC
Bednařík P, Moheet A, Deelchand DK, Emir UE, Eberly LE, Bares M, Seaquist ER, Öz G. Feasibility and reproducibility of neurochemical profile quantification in the human hippocampus at 3 T. NMR Biomed. 2015;28(6):685–693. PubMed PMC
Near J, Andersson J, Maron E, Mekle R, Gruetter R, Cowen P, Jezzard P. Unedited in vivo detection and quantification of gamma-aminobutyric acid in the occipital cortex using short-TE MRS at 3 T. NMR Biomed. 2013;26(11):1353–1362. PubMed
Wijtenburg SA, Gaston FE, Spieker EA, Korenic SA, Kochunov P, Hong LE, Rowland LM. Reproducibility of phase rotation STEAM at 3T: focus on glutathione. Magn Reson Med. 2014;72(3):603–609. PubMed PMC
Emir UE, Auerbach EJ, Moortele PF, Marjańska M, Ugurbil K, Terpstra M, Tkáč I, Öz G. Regional neurochemical profiles in the human brain measured by 1H MRS at 7 T using local B1 shimming. NMR Biomed. 2012;25(1):152–160. PubMed PMC
Marjańska M, Auerbach EJ, Valabregue R, Van de Moortele PF, Adriany G, Garwood M. Localized 1H NMR spectroscopy in different regions of human brain in vivo at 7 T: T2 relaxation times and concentrations of cerebral metabolites. NMR Biomed. 2012;25(2):332–339. PubMed PMC
Boer VO, Siero JC, Hoogduin H, van Gorp JS, Luijten PR, Klomp DW. High-field MRS of the human brain at short TE and TR. NMR Biomed. 2011;24:1081–1088. PubMed
Bednařík P, Tkáč I, Giove F, DiNuzzo M, Deelchand DK, Emir UE, Eberly LE, Mangia S. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla. J Cereb Blood Flow Metab. 2015;35:601–610. PubMed PMC
van de Bank BL, Emir UE, Boer VO, van Asten JJ, Maas MC, Wijnen JP, Kan HE, Öz G, Klomp DW, Scheenen TW. Multi-center reproducibility of neurochemical profiles in the human brain at 7 T. NMR Biomed. 2015;28(3):306–316. PubMed PMC
Scheenen TW, Klomp DW, Wijnen JP, Heerschap A. Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med. 2008;59(1):1–6. PubMed
Öz G, Tkáč I. Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: Validation in the cerebellum and brainstem. Magn Reson Med. 2011;65(4):901–910. PubMed PMC
Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137(Pt 1):12–32. PubMed PMC
Murray ME, Przybelski SA, Lesnick TG, Liesinger AM, Spychalla A, Zhang B, Gunter JL, Parisi JE, Boeve BF, Knopman DS, Petersen RC, Jack CR, Jr, Dickson DW, Kantarci K. Early Alzheimer's disease neuropathology detected by proton MR spectroscopy. J Neurosci. 2014;34(49):16247–16255. PubMed PMC
Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. 2009;33(3):279–296. PubMed
Öz G. MR Spectroscopy in Health and Disease. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the Cerebellum and Cerebellar Disorders. Vol. 1. Dordrecht: Springer; 2013. pp. 713–733.
Adriany G, Van de Moortele PF, Ritter J, Moeller S, Auerbach EJ, Akgun C, Snyder CJ, Vaughan T, Ugurbil K. A geometrically adjustable 16-channel transmit/receive transmission line array for improved RF efficiency and parallel imaging performance at 7 Tesla. Magn Reson Med. 2008;59(3):590–597. PubMed
Gruetter R, Tkáč I. Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med. 2000;43(2):319–323. PubMed
Ernst T, Kreis R, Ross BD. Absolute Quantitation of Water and Metabolites in the Human Brain. I. Compartments and Water. J Magn Reson, Series B. 1993;102(1):1–8.
Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672–679. PubMed
Deelchand DK, Henry PG, Ugurbil K, Marjańska M. Measurement of transverse relaxation times of J-coupled metabolites in the human visual cortex at 4 T. Magn Reson Med. 2012;67:891–897. PubMed PMC
Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13(3):129–153. PubMed
Tkáč I. 16th Scientific Meeting of the ISMRM. Toronto, Canada: 2008. Refinement of simulated basis set for LCModel analysis; p. 1624.
Schaller B, Xin L, Gruetter R. Is the macromolecule signal tissue-specific in healthy human brain? A 1H MRS study at 7 tesla in the occipital lobe. Magn Reson Med. 2014;72(4):934–940. PubMed
Snoussi K, Gillen JS, Horska A, Puts NA, Pradhan S, Edden RA, Barker PB. Comparison of brain gray and white matter macromolecule resonances at 3 and 7 Tesla. Magn Reson Med. 2015;74(3):607–613. PubMed PMC
Siegel GJ, editor. Basic neurochemistry: molecular, cellular and medical aspects. 6 ed. Philadelphia: Lippincott-Raven Publishers; 1999.
Provencher SW. LCModel & LCMgui User's Manual. 2001
Vangel MG. Confidence intervals for a normal coefficient of variation. Am Stat. 1996;50(1):21–26.
Hoult DI. Rotating frame zeugmatography. J Magn Reson. 1979;33:183–197. PubMed
Kreis R. The trouble with quality filtering based on relative Cramer-Rao lower bounds. Magn Reson Med. 2015 PubMed
Wijtenburg SA, Rowland LM, Edden RA, Barker PB. Reproducibility of brain spectroscopy at 7T using conventional localization and spectral editing techniques. J Magn Reson Imaging. 2013;38(2):460–467. PubMed PMC
Marjańska M, Emir UE, Deelchand DK, Terpstra M. Faster metabolite 1H transverse relaxation in the elder human brain. PLoS One. 2013;8(10):e77572. PubMed PMC
Öngür D, Prescot AP, Jensen JE, Rouse ED, Cohen BM, Renshaw PF, Olson DP. T2 relaxation time abnormalities in bipolar disorder and schizophrenia. Magn Reson Med. 2010;63(1):1–8. PubMed
Emir UE, Deelchand D, Henry PG, Terpstra M. Noninvasive quantification of T2 and concentrations of ascorbate and glutathione in the human brain from the same double-edited spectra. NMR Biomed. 2011;24(3):263–269. PubMed PMC
Zaaraoui W, Fleysher L, Fleysher R, Liu S, Soher BJ, Gonen O. Human brain-structure resolved T2 relaxation times of proton metabolites at 3 Tesla. Magn Reson Med. 2007;57(6):983–989. PubMed
Neurochemical responses to chromatic and achromatic stimuli in the human visual cortex