Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26632513
DOI
10.1016/j.thromres.2015.11.032
PII: S0049-3848(15)30208-5
Knihovny.cz E-resources
- Keywords
- Cardio/cerebrovascular diseases, Gestational hypertension, Intrauterine growth restriction, MicroRNA, Preeclampsia,
- MeSH
- Cerebrovascular Disorders blood genetics MeSH
- Adult MeSH
- Epigenesis, Genetic genetics MeSH
- Genetic Predisposition to Disease genetics MeSH
- Hypertension, Pregnancy-Induced blood genetics MeSH
- Cardiovascular Diseases blood genetics MeSH
- Humans MeSH
- MicroRNAs blood genetics MeSH
- Pre-Eclampsia blood genetics MeSH
- Fetal Growth Retardation blood genetics MeSH
- Pregnancy MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- MicroRNAs MeSH
AIMS: To demonstrate that pregnancy-related complications are associated with alterations in cardiovascular and cerebrovascular microRNA expression. Gene expression of 29 microRNAs (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-92a-3p, miR-100-5p, miR-103a-3p, miR-122-5p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p) was assessed in maternal whole peripheral blood, compared between groups (39 gestational hypertension, 68 preeclampsia, 33 intrauterine growth restriction and 20 normal pregnancies) and correlated with the severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound parameters. Initially, selection and validation of endogenous controls for microRNA expression studies in patients affected by pregnancy-related complications have been carried out. RESULTS: The expression profile of microRNAs was different between pregnancy-related complications and controls. The down-regulation of miR-100-5p, miR-125b-5p and miR-199a-5p was a common phenomenon shared between gestational hypertension, preeclampsia, and intrauterine growth restriction. Moreover, IUGR pregnancies induced down-regulation of miR-17-5p, miR-146a-5p, miR-221-3p and miR-574-3p in maternal circulation. Irrespective of the severity of the disease, preeclampsia was associated with the dysregulation of miR-100-5p and miR-125b-5p and IUGR with dysregulation of miR-199a-5p. Preeclampsia requiring termination of gestation before 34 weeks was associated with down-regulation of miR-146a-5p, miR-199a-5p and miR-221-3p. Weak negative correlation between miR-146a-5p and miR-221-3p expression and the pulsatility index in the umbilical artery was found. Additional microRNAs (miR-103a-3p, miR-126-3p, miR-195-5p and miR-499a-5p) showed a trend to down-regulation in appropriate pregnancy-related complications. CONCLUSION: Epigenetic changes are induced by pregnancy-related complications in maternal whole peripheral blood.
References provided by Crossref.org