Innovation in the prognostication of chronic lymphocytic leukemia: how far beyond TP53 gene analysis can we go?
Jazyk angličtina Země Itálie Médium print
Typ dokumentu úvodníky, práce podpořená grantem
PubMed
26928246
PubMed Central
PMC4815716
DOI
10.3324/haematol.2015.139246
PII: haematol.2015.139246
Knihovny.cz E-zdroje
- MeSH
- adenin analogy a deriváty MeSH
- alely MeSH
- antitumorózní látky terapeutické užití MeSH
- bicyklické sloučeniny heterocyklické terapeutické užití MeSH
- chinazolinony terapeutické užití MeSH
- chronická lymfatická leukemie diagnóza farmakoterapie genetika patologie MeSH
- cílená molekulární terapie MeSH
- exprese genu MeSH
- fosfatidylinositol-3-kinasy třídy I antagonisté a inhibitory genetika metabolismus MeSH
- frekvence genu MeSH
- lidé MeSH
- nádorové biomarkery genetika metabolismus MeSH
- nádorový supresorový protein p53 nedostatek genetika MeSH
- piperidiny MeSH
- prognóza MeSH
- proteinkinasa BTK MeSH
- puriny terapeutické užití MeSH
- pyrazoly terapeutické užití MeSH
- pyrimidiny terapeutické užití MeSH
- sulfonamidy terapeutické užití MeSH
- tyrosinkinasy antagonisté a inhibitory genetika metabolismus MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- úvodníky MeSH
- Názvy látek
- adenin MeSH
- antitumorózní látky MeSH
- bicyklické sloučeniny heterocyklické MeSH
- chinazolinony MeSH
- fosfatidylinositol-3-kinasy třídy I MeSH
- ibrutinib MeSH Prohlížeč
- idelalisib MeSH Prohlížeč
- nádorové biomarkery MeSH
- nádorový supresorový protein p53 MeSH
- PIK3CD protein, human MeSH Prohlížeč
- piperidiny MeSH
- proteinkinasa BTK MeSH
- puriny MeSH
- pyrazoly MeSH
- pyrimidiny MeSH
- sulfonamidy MeSH
- TP53 protein, human MeSH Prohlížeč
- tyrosinkinasy MeSH
- venetoclax MeSH Prohlížeč
Department of Internal Medicine 3 Ulm University Germany
Hematology Department Hospital de la Santa Creu i Sant Pau Barcelona Spain
Zobrazit více v PubMed
Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–1916. PubMed
Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010;10(1):37–50. PubMed
Stilgenbauer S, Schnaiter A, Paschka P, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123(21):3247–3254. PubMed
Zenz T, Eichhorst B, Busch R, et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010;28(29):4473–4479. PubMed
Pospisilova S, Gonzalez D, Malcikova J, et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia. 2012;26(7):1458–1461. PubMed
Malcikova J, Smardova J, Rocnova L, et al. Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood. 2009;114(26):5307–5314. PubMed
Rossi D, Cerri M, Deambrogi C, et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res. 2009;15(3):995–1004. PubMed
Gonzalez D, Martinez P, Wade R, et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol. 2011;29(16):2223–2229. PubMed
Brown JR, Byrd JC, Coutre SE, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;123(22):3390–3397. PubMed PMC
Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–223. PubMed PMC
Stilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax (ABT-199/GDC-0199) Monotherapy Induces Deep Remissions, Including Complete Remission and Undetectable MRD, in Ultra-High Risk Relapsed/Refractory Chronic Lymphocytic Leukemia with 17p Deletion: Results of the Pivotal International Phase 2 Study. American Society of Hematology; 2015; Orlando, Florida.
Sutton LA, Ljungstrom V, Mansouri L, et al. Targeted next-generation sequencing in chronic lymphocytic leukemia: a high-throughput yet tailored approach will facilitate implementation in a clinical setting. Haematologica. 2015;100(3):370–376. PubMed PMC
Rossi D, Khiabanian H, Spina V, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood. 2014;123(14):2139–2147. PubMed PMC
Malcikova J, Stano-Kozubik K, Tichy B, et al. Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia. 2015;29(4):877–885. PubMed PMC
Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525–530. PubMed PMC
Sutton LA, Rosenquist R. Deciphering the molecular landscape in chronic lymphocytic leukemia: time frame of disease evolution. Haematologica. 2015;100(1):7–16. PubMed PMC
Guieze R, Robbe P, Clifford R, et al. Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL. Blood. 2015;126(18):2110–2117. PubMed
Rossi D, Rasi S, Spina V, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121(8):1403–1412. PubMed PMC
Baliakas P, Hadzidimitriou A, Sutton LA, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2015;29(2):329–336. PubMed
Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152(4): 714–726. PubMed PMC
Schuh A, Becq J, Humphray S, et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood. 2012;120(20):4191–4196. PubMed