Evaluation of capacity to detect ability to form biofilm in Candida parapsilosis sensu stricto strains by MALDI-TOF MS
Language English Country United States Media print-electronic
Document type Evaluation Study, Journal Article
PubMed
27068413
DOI
10.1007/s12223-016-0458-7
PII: 10.1007/s12223-016-0458-7
Knihovny.cz E-resources
- MeSH
- Biofilms growth & development MeSH
- Candida chemistry physiology MeSH
- Humans MeSH
- Microbiological Techniques methods MeSH
- Reproducibility of Results MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is, currently, used as a rapid and reliable tool in microbial diagnostics. The discriminatory power of the method extends its applicability also beyond species level. This study examined the possibility to use MALDI-TOF MS to differentiate between Candida parapsilosis sensu stricto biofilm-positive (n = 12) and biofilm-negative (n = 9) strains. The results indicated a grouping trend within MALDI-TOF mass spectra belonging to each of the tested groups. However, these trends were eclipsed by mass spectral variations resulting from limited repeatability of the method, making its application for the selected purpose impossible. Improvement in the discriminatory power of the method was not obtained neither by using different matrices (α-cyano-4-hydroxycinnamic acid, ferulic acid, 5-chloro-2-mercaptobenzothionazole) for MALDI-TOF MS analysis nor by testing different culture conditions (cultivation length, culture media).
See more in PubMed
J Clin Microbiol. 2010 Oct;48(10):3482-6 PubMed
J Microbiol Methods. 2010 Mar;80(3):299-301 PubMed
Clin Microbiol Infect. 2014 Dec;20(12):O1091-7 PubMed
Rapid Commun Mass Spectrom. 2000;14(23):2220-9 PubMed
Clin Microbiol Infect. 2011 Sep;17(9):1359-65 PubMed
J Am Soc Mass Spectrom. 2003 Apr;14(4):342-51 PubMed
Analyst. 2012 Apr 21;137(8):1937-43 PubMed
Appl Environ Microbiol. 2011 Jun;77(12):4136-46 PubMed
Diagn Microbiol Infect Dis. 2011 Aug;70(4):544-8 PubMed
Folia Microbiol (Praha). 2007;52(3):209-14 PubMed
Trends Microbiol. 2003 Jan;11(1):30-6 PubMed
Infect Immun. 1982 Jul;37(1):318-26 PubMed
J Hosp Infect. 2005 Feb;59(2):159-62 PubMed
Crit Rev Microbiol. 2009;35(4):283-309 PubMed
Rapid Commun Mass Spectrom. 2013 Dec 30;27(24):2729-36 PubMed
Clin Microbiol Rev. 2008 Oct;21(4):606-25 PubMed
Antimicrob Agents Chemother. 2005 Feb;49(2):584-9 PubMed
Microb Pathog. 2015 Sep;86:32-7 PubMed
Infect Immun. 2002 Feb;70(2):878-88 PubMed
J Clin Microbiol. 2007 Jun;45(6):1843-50 PubMed
Mol Microbiol. 2013 Oct;90(1):36-53 PubMed
Infect Immun. 1994 Mar;62(3):915-21 PubMed
Int J Mol Sci. 2014 Dec 22;15(12):23924-35 PubMed
J Mass Spectrom. 2011 Nov;46(11):1160-7 PubMed
FEMS Microbiol Lett. 2002 Apr 23;210(1):25-31 PubMed
Antimicrob Agents Chemother. 2002 Jun;46(6):1773-80 PubMed
FEMS Microbiol Lett. 2001 Nov 27;205(1):139-46 PubMed
Infect Genet Evol. 2004 Sep;4(3):221-42 PubMed
Nucleic Acids Res. 2012 Jan;40(Database issue):D667-74 PubMed
J Microbiol Methods. 2007 Mar;68(3):530-5 PubMed