Synthesis of Novel Pyrazinamide Derivatives Based on 3-Chloropyrazine-2-carboxamide and Their Antimicrobial Evaluation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28157178
PubMed Central
PMC6155776
DOI
10.3390/molecules22020223
PII: molecules22020223
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterials, antifungals, benzylamines, cytotoxicity, microwave-assisted, pyrazinamide, tuberculosis,
- MeSH
- amidy chemie MeSH
- antibakteriální látky chemická syntéza farmakologie MeSH
- antifungální látky chemická syntéza farmakologie MeSH
- antiinfekční látky chemická syntéza farmakologie MeSH
- antituberkulotika chemická syntéza farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- pyrazinamid chemická syntéza farmakologie MeSH
- pyraziny chemie MeSH
- simulace molekulového dockingu MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amidy MeSH
- antibakteriální látky MeSH
- antifungální látky MeSH
- antiinfekční látky MeSH
- antituberkulotika MeSH
- pyrazinamid MeSH
- pyraziny MeSH
Aminodehalogenation of 3-chloropyrazine-2-carboxamide with variously substituted benzylamines yielded a series of fifteen 3-benzylaminopyrazine-2-carboxamides. Four compounds possessed in vitro whole cell activity against Mycobacterium tuberculosis H37Rv that was at least equivalent to that of the standard pyrazinamide. MIC values ranged from 6 to 42 μM. The best MIC (6 μM) was displayed by 3-[(4-methylbenzyl)amino]pyrazine-2-carboxamide (8) that also showed low cytotoxicity in the HepG2 cell line (IC50 ≥ 250 μM). Only moderate activity against Enterococcus faecalis and Staphylococcus aureus was observed. No activity was detected against any of tested fungal strains. Molecular docking with mycobacterial enoyl-ACP reductase (InhA) was performed to investigate the possible target of the prepared compounds. Active compounds shared common binding interactions of known InhAinhibitors. Antimycobacterial activity of the title compounds was compared to the previously published benzylamino-substituted pyrazines with differing substitution on the pyrazine core (carbonitrile moiety). The title series possessed comparable activity and lower cytotoxicity than molecules containing a carbonitrile group on the pyrazine ring.
Zobrazit více v PubMed
World Health Organization . Global Tuberculosis Report 2016. WHO Press; Geneva, Switzerland: 2016. WHO/HTM/TB/2016.13.
Palomino J.C., Martin A. TMC207 becomes bedaquiline, a new anti-TB drug. Future Microbiol. 2013;8:1071–1080. doi: 10.2217/fmb.13.85. PubMed DOI
Zhang Y., Mitchison D. The curious characteristics of pyrazinamide: A review. Int. J. Tuberc. Lung Dis. 2003;7:6–21. PubMed
Zhang Y., Wade M.M., Scorpio A., Zhang H., Sun Z. Mode of action of pyrazinamide: Disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 2003;52:790–795. doi: 10.1093/jac/dkg446. PubMed DOI
Peterson N.D., Rosen B.C., Dillon N.A., Baughn A.D. Uncoupling environmental pH and intrabacterial acidification from pyrazinamide susceptibility in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2015;59:7320–7326. doi: 10.1128/AAC.00967-15. PubMed DOI PMC
Sayahi H., Zimhony O., Jacobs W.R., Shekthman A., Welch J.T. Pyrazinamide, but not pyrazinoic acid, is a competitive inhibitor of NADPH binding to Mycobacterium tuberculosis fatty acid synthase I. Bioorg. Med. Chem. Lett. 2011;21:4804–4807. doi: 10.1016/j.bmcl.2011.06.055. PubMed DOI PMC
Shi W.L., Zhang X.L., Jiang X., Yuan H.M., Lee J.S., Barry C.E., Wang H.H., Zhang W.H., Zhang Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science. 2011;333:1630–1632. doi: 10.1126/science.1208813. PubMed DOI PMC
Shi W., Chen J., Feng J., Cui P., Zhang S., Weng X., Zhang W., Zhang Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2014;3:e58. doi: 10.1038/emi.2014.61. PubMed DOI PMC
Zitko J., Dolezal M., Svobodova M., Vejsova M., Kunes J., Kucera R., Jilek P. Synthesis and antimycobacterial properties of N-substituted-6-amino-5-cyanopyrazine-2-carboxamides. Bioorg. Med. Chem. 2011;19:1471–1476. doi: 10.1016/j.bmc.2010.12.054. PubMed DOI
Zitko J., Jampilek J., Dobrovolny L., Svobodova M., Kunes J., Dolezal M. Synthesis and antimycobacterial evaluation of N-substituted 3-aminopyrazine-2,5-dicarbonitriles. Bioorg. Med. Chem. Lett. 2012;22:1598–1601. doi: 10.1016/j.bmcl.2011.12.129. PubMed DOI
Servusova B., Paterova P., Mandikova J., Kubicek V., Kucera R., Kunes J., Dolezal M., Zitko J. Alkylamino derivatives of pyrazinamide: Synthesis and antimycobacterial evaluation. Bioorg. Med. Chem. Lett. 2014;24:450–453. doi: 10.1016/j.bmcl.2013.12.054. PubMed DOI
Zitko J., Servusova B., Janoutova A., Paterova P., Mandikova J., Garaj V., Vejsova M., Marek J., Dolezal M. Synthesis and antimycobacterial evaluation of 5-alkylamino-N-phenylpyrazine-2-carboxamides. Bioorg. Med. Chem. 2015;23:174–183. doi: 10.1016/j.bmc.2014.11.014. PubMed DOI
Servusova-Vanaskova B., Jandourek O., Paterova P., Kordulakova J., Plevakova M., Kubicek V., Kucera R., Garaj V., Naesens L., Kunes J., et al. Alkylamino derivatives of N-benzylpyrazine-2-carboxamide: synthesis and antimycobacterial evaluation. MedChemComm. 2015;6:1311–1317. doi: 10.1039/C5MD00178A. DOI
Servusova B., Eibinova D., Dolezal M., Kubicek V., Paterova P., Pesko M., Kralova K. Substituted N-benzylpyrazine-2-carboxamides: Synthesis and biological evaluation. Molecules. 2012;17:13183–13198. doi: 10.3390/molecules171113183. PubMed DOI PMC
Servusova B., Vobickova J., Paterova P., Kubicek V., Kunes J., Dolezal M., Zitko J. Synthesis and antimycobacterial evaluation of N-substituted 5-chloropyrazine-2-carboxamides. Bioorg. Med. Chem. Lett. 2013;23:3589–3591. doi: 10.1016/j.bmcl.2013.04.021. PubMed DOI
Zitko J., Paterova P., Kubicek V., Mandikova J., Trejtnar F., Kunes J., Dolezal M. Synthesis and antimycobacterial evaluation of pyrazinamide derivatives with benzylamino substitution. Bioorg. Med. Chem. Lett. 2013;23:476–479. doi: 10.1016/j.bmcl.2012.11.052. PubMed DOI
Jandourek O., Dolezal M., Paterova P., Kubicek V., Pesko M., Kunes J., Coffey A., Guo J., Kralova K. N-Substituted 5-amino-6-methylpyrazine-2,3-dicarbonitriles: Microwave-assisted synthesis and biological properties. Molecules. 2014;19:651–671. doi: 10.3390/molecules19010651. PubMed DOI PMC
Hayes B.L. Microwave Synthesis: Chemistry at the Speed of Light. CEM Pub.; Matthews, NC, USA: 2002.
Jandourek O., Dolezal M., Klementova M., Kralova K., Pesko M. Microwave assisted synthesis of new pyrazinamide analogues and their biological evaluation; Proceedings of the 16th International Electronic Conference on Synthetic Organic Chemistry; 29 November 2012; Basel, Switzerland: MDPI; 2012. p. 12.
Kralova K., Pesko M., Paterova P., Kunes J., Tauchman M., Eibinova D., Carillo C., Zitko J., Dolezal M. Substituted N-benzylpyrazine-2-carboxamides, Their Synthesis, Hydro-lipophilic Properties and Evaluation of Their Antimycobacterial and Photosynthesis-inhibiting Activities; Proceedings of the 15th International Electronic Conference on Synthetic Organic Chemistry; 1–30 November 2011; Basel, Switzerland: MDPI; 2011. p. 6.
Kuo M.R., Morbidoni M.R., Alland D., Sneddon S.F., Gourlie B.B., Staveski M.M., Leonard M., Gregory J.S., Janjigian A.D., Yee C., et al. Targeting tuberculosis and malaria through inhibition of enoyl reductase compound activity and structural data. J. Biol. Chem. 2003;278:20851–20859. doi: 10.1074/jbc.M211968200. PubMed DOI
Ghattas M.A., Mansour R.A., Atatreh N., Bryce R.A. Analysis of Enoyl-Acyl Carrier Protein Reductase Structure and Interactions Yields an Efficient Virtual Screening Approach and Suggests a Potential Allosteric Site. Chem. Biol. Drug Des. 2016;87:131–142. doi: 10.1111/cbdd.12635. PubMed DOI
Yang J., Liu Y., Bi J., Cai Q., Liao X., Li W., Guo C., Zhang Q., Lin T., Zhao Y., et al. Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide. Mol. Microbiol. 2015;95:791–803. doi: 10.1111/mmi.12892. PubMed DOI
Petrella S., Gelus-Ziental N., Maudry A., Laurans C., Boudjelloul R., Sougakoff W. Crystal structure of the pyrazinamidase of Mycobacterium tuberculosis: insights into natural and acquired resistance to pyrazinamide. PLoS ONE. 2011;6:e15785. doi: 10.1371/journal.pone.0015785. PubMed DOI PMC
Pandey B., Grover S., Tyagi C., Goyal S., Jamal S., Singh A., Kaur J., Grover A. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis. Gene. 2016;581:31–42. doi: 10.1016/j.gene.2016.01.024. PubMed DOI
Ciccarelli L., Connell S.R., Enderle M., Mills D.J., Vonck J., Grininger M. Structure and conformational variability of the Mycobacterium tuberculosis fatty acid synthase multienzyme complex. Structure. 2013;21:1251–1257. doi: 10.1016/j.str.2013.04.023. PubMed DOI
Dlabal K., Palat K., Lycka A., Odlerova Z. Synthesis and 1H and 13C NMR spectra of sulfur derivatives of pyrazine derived from amidation product of 2-chloropyrazine and 6-chloro-2-pyrazinecarbonitrile. Tuberculostatic activity. Collect. Czech Chem. Commun. 1990;55:2493–2500. doi: 10.1135/cccc19902493. DOI
Jampilek J., Dolezal M., Kunes J., Satinsky D., Raich I. Novel regioselective preparation of 5-chloropyrazine-2-carbonitrile from pyrazine-2-carboxamide and coupling study of substituted phenylsulfanylpyrazine-2-carboxylic acid derivatives. Curr. Org. Chem. 2005;9:49–60. doi: 10.2174/1385272053369312. DOI
Jandourek O., Dolezal M., Kunes J. Microwave-Assisted Synthesis of Pyrazinamide Derivatives: The Coupling Reaction of 3-Chloropyrazine-2-Carboxamide and Ring-Substituted Anilines. Curr. Org. Synth. 2015;12:189–196. doi: 10.2174/1570179411999141106101501. DOI
Ebeid F.M., Gheit A.K.A., Ezzo E.M., Ali L.I. Decomposition of Triethylamine over Acid Catalysts. J. Chin. Chem. Soc.-Taip. 1982;29:125–129. doi: 10.1002/jccs.198200020. DOI
Dickinson J.M., Mitchison D.A. Observations in vitro on the suitability of pyrazinamide for intermittent chemotherapy of tuberculosis. Tubercle. 1970;51:389–396. doi: 10.1016/0041-3879(70)90004-8. PubMed DOI
McDermott W., Tomsett R. Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am. Rev. Tuberc. 1954;70:748–754. PubMed
Heifets L., Lindholm-Levy P. Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am. Rev. Respir. Dis. 1992;145:1223–1225. doi: 10.1164/ajrccm/145.5.1223. PubMed DOI
Butler W.R., Kilburn J.O. Improved method for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. J. Clin. Microbiol. 1982;16:1106–1109. PubMed PMC
Portaels F., Pattyn S.R. Growth of mycobacteria in relation to the pH of the medium. Ann. Microbiol. 1982;133:213–221. PubMed
Sula J. WHO Co-operative studies on a simple culture technique for the isolation of mycobacteria: 1. Preparation, lyophilization and reconstitution of a simple semi-synthetic concentrated liquid medium; culture technique; growth pattern of different mycobacteria. Bull. Wld. Hlth. Org. 1963;29:589–606. PubMed PMC
Sula J., Sundaresan T.K. WHO Co-operative studies on a simple culture technique for the isolation of mycobacteria: 2. Comparison of the efficacy of lyophilized liquid medium with that of Löwenstein-Jensen (LJ) medium. Bull. Wld. Hlth. Org. 1963;29:607–625. PubMed PMC
Alegre O.S. Estudio comparativo de las posibilidades de los medios de Löwenstein-Jensen y liofilizado reconsititudo de Sula para el aislamiento del Myocbaterium tuberculosis. Bol. Oficina Sanit. Panam. 1967;63:13–16. PubMed
Zitko J., Servusova B., Paterova P., Mandikova J., Kubicek V., Kucera R., Hrabcova V., Kunes J., Soukup O., Dolezal M. Synthesis, antimycobacterial activity and in vitro cytotoxicity of 5-chloro-N-phenylpyrazine-2-carboxamides. Molecules. 2013;18:14807–14825. doi: 10.3390/molecules181214807. PubMed DOI PMC
Bielenica A., Stefańska J., Stępień K., Napiórkowska A., Augustynowicz-Kopeć E., Sanna G., Madeddu S., Boi S., Giliberti G., Wrzosek M., et al. Synthesis, cytotoxicity and antimicrobial activity of thiourea derivatives incorporating 3-(trifluoromethyl) phenyl moiety. Eur. J. Med. Chem. 2015;101:111–125. doi: 10.1016/j.ejmech.2015.06.027. PubMed DOI
Kratky M., Vinsova J., Novotna E., Mandikova J., Trejtnar F., Stolarikova J. Antibacterial activity of salicylanilide 4-(trifluoromethyl)-benzoates. Molecules. 2013;18:3674–3688. doi: 10.3390/molecules18043674. PubMed DOI PMC
Keir W.F., MacLennan A.H., Wood H.C. Amidinoacetamides in the synthesis of pyrazines and pteridines. J. Chem. Soc. Perk. T. 1. 1977;11:1321–1325. doi: 10.1039/p19770001321. DOI
Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. PubMed PMC
Jones R.N., Barry A.L. Optimal dilution susceptibility testing conditions, recommendations for MIC interpretation, and quality control guidelines for the ampicillin-sulbactam combination. J. Clin. Microbiol. 1987;25:1920–1925. PubMed PMC
National Committee for Clinical Laboratory Standards . Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Proposed Standard M 27-P. National Committee for Clinical Laboratory Standards; Villanova, PA, USA: 1992.