Modulation of Aneuploidy in Leishmania donovani during Adaptation to Different In Vitro and In Vivo Environments and Its Impact on Gene Expression
Language English Country United States Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Wellcome Trust - United Kingdom
098051
Wellcome Trust - United Kingdom
PubMed
28536289
PubMed Central
PMC5442457
DOI
10.1128/mbio.00599-17
PII: mBio.00599-17
Knihovny.cz E-resources
- Keywords
- Leishmania, aneuploidy, gene dosage, genomics, life cycle,
- MeSH
- Aneuploidy * MeSH
- Adaptation, Biological * MeSH
- Gene Expression * MeSH
- Genome, Protozoan MeSH
- Cricetinae MeSH
- Leishmania donovani genetics MeSH
- Humans MeSH
- Psychodidae MeSH
- Sequence Analysis, DNA MeSH
- Gene Expression Profiling MeSH
- Environment MeSH
- Animals MeSH
- Check Tag
- Cricetinae MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Aneuploidy is usually deleterious in multicellular organisms but appears to be tolerated and potentially beneficial in unicellular organisms, including pathogens. Leishmania, a major protozoan parasite, is emerging as a new model for aneuploidy, since in vitro-cultivated strains are highly aneuploid, with interstrain diversity and intrastrain mosaicism. The alternation of two life stages in different environments (extracellular promastigotes and intracellular amastigotes) offers a unique opportunity to study the impact of environment on aneuploidy and gene expression. We sequenced the whole genomes and transcriptomes of Leishmania donovani strains throughout their adaptation to in vivo conditions mimicking natural vertebrate and invertebrate host environments. The nucleotide sequences were almost unchanged within a strain, in contrast to highly variable aneuploidy. Although high in promastigotes in vitro, aneuploidy dropped significantly in hamster amastigotes, in a progressive and strain-specific manner, accompanied by the emergence of new polysomies. After a passage through a sand fly, smaller yet consistent karyotype changes were detected. Changes in chromosome copy numbers were correlated with the corresponding transcript levels, but additional aneuploidy-independent regulation of gene expression was observed. This affected stage-specific gene expression, downregulation of the entire chromosome 31, and upregulation of gene arrays on chromosomes 5 and 8. Aneuploidy changes in Leishmania are probably adaptive and exploited to modulate the dosage and expression of specific genes; they are well tolerated, but additional mechanisms may exist to regulate the transcript levels of other genes located on aneuploid chromosomes. Our model should allow studies of the impact of aneuploidy on molecular adaptations and cellular fitness.IMPORTANCE Aneuploidy is usually detrimental in multicellular organisms, but in several microorganisms, it can be tolerated and even beneficial. Leishmania-a protozoan parasite that kills more than 30,000 people each year-is emerging as a new model for aneuploidy studies, as unexpectedly high levels of aneuploidy are found in clinical isolates. Leishmania lacks classical regulation of transcription at initiation through promoters, so aneuploidy could represent a major adaptive strategy of this parasite to modulate gene dosage in response to stressful environments. For the first time, we document the dynamics of aneuploidy throughout the life cycle of the parasite, in vitro and in vivo We show its adaptive impact on transcription and its interaction with regulation. Besides offering a new model for aneuploidy studies, we show that further genomic studies should be done directly in clinical samples without parasite isolation and that adequate methods should be developed for this.
Charles University Prague Czech Republic
Department of Biomedical Sciences University of Antwerp Antwerp Belgium
Molecular Cytogenetics and Genome Research Department of Human Genetics KU Leuven Leuven Belgium
Molecular Parasitology Institute of Tropical Medicine Antwerp Belgium
Mycobacteriology Unit Institute of Tropical Medicine Antwerp Belgium
Unité de Parasitologie Moléculaire et Signalisation INSERM U1201 Institut Pasteur Paris France
Wellcome Trust Sanger Institute Hinxton Cambridge United Kingdom
See more in PubMed
Mulla W, Zhu J, Li R. 2014. Yeast: a simple model system to study complex phenomena of aneuploidy. FEMS Microbiol Rev 38:201–212. doi:10.1111/1574-6976.12048. PubMed DOI PMC
Nagaoka SI, Hassold TJ, Hunt PA. 2012. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet 13:493–504. doi:10.1038/nrg3245. PubMed DOI PMC
Selmecki A, Forche A, Berman J. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313:367–370. doi:10.1126/science.1128242. PubMed DOI PMC
Hose J, Yong CM, Sardi M, Wang Z, Newton MA, Gasch AP. 2015. Dosage compensation can buffer copy-number variation in wild yeast. Elife 4:e05462. doi:10.7554/eLife.05462. PubMed DOI PMC
Sionov E, Lee H, Chang YC, Kwon-Chung KJ. 2010. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog 6:e1000848. doi:10.1371/journal.ppat.1000848. PubMed DOI PMC
Anderson CA, Roberts S, Zhang H, Kelly CM, Kendall A, Lee C, Gerstenberger J, Koenig AB, Kabeche R, Gladfelter AS. 2015. Ploidy variation in multinucleate cells changes under stress. Mol Biol Cell 26:1129–1140. doi:10.1091/mbc.E14-09-1375. PubMed DOI PMC
Berman J. 2016. Ploidy plasticity: a rapid and reversible strategy for adaptation to stress. FEMS Yeast Res 16:fow020. doi:10.1093/femsyr/fow020. PubMed DOI
Refsnider JM, Poorten TJ, Langhammer PF, Burrowes PA, Rosenblum EB. 2015. Genomic correlates of virulence attenuation in the deadly amphibian chytrid fungus, Batrachochytrium dendrobatidis. G3 (Bethesda) 5:2291–2298. doi:10.1534/g3.115.021808. PubMed DOI PMC
Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, Delorey T, Li BYu, White TC, Cuomo C, Rao RP, Berman J, Thompson DA, Regev A. 2015. The evolution of drug resistance in clinical isolates of Candida albicans. Elife 4:e00662. doi:10.7554/eLife.00662. PubMed DOI PMC
Ersfeld K. 2011. Nuclear architecture, genome and chromatin organisation in Trypanosoma brucei. Res Microbiol 162:626–636. doi:10.1016/j.resmic.2011.01.014. PubMed DOI
Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, Harris D, Her Y, Herzyk P, Imamura H, Otto TD, Sanders M, Seeger K, Dujardin JC, Berriman M, Smith DF, Hertz-Fowler C, Mottram JC. 2011. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 21:2129–2142. doi:10.1101/gr.122945.111. PubMed DOI PMC
Imamura H, Downing T, Van den Broeck F, Sanders MJ, Rijal S, Sundar S, Mannaert A, Vanaerschot M, Berg M, De Muylder G, Dumetz F, Cuypers B, Maes I, Domagalska M, Decuypere S, Rai K, Uranw S, Bhattarai NR, Khanal B, Prajapati VK, Sharma S, Stark O, Schönian G, De Koning HP, Settimo L, Vanhollebeke B, Roy S, Ostyn B, Boelaert M, Maes L, Berriman M, Dujardin JC, Cotton JA. 2016. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. Elife 5:1–39. doi:10.7554/eLife.12613. PubMed DOI PMC
Sterkers Y, Lachaud L, Crobu L, Bastien P, Pagès M. 2011. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell Microbiol 13:274–283. doi:10.1111/j.1462-5822.2010.01534.x. PubMed DOI
Ubeda JM, Légaré D, Raymond F, Ouameur AA, Boisvert S, Rigault P, Corbeil J, Tremblay MJ, Olivier M, Papadopoulou B, Ouellette M. 2008. Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol 9:R115. doi:10.1186/gb-2008-9-7-r115. PubMed DOI PMC
Shaw CD, Lonchamp J, Downing T, Imamura H, Freeman TM, Cotton JA, Sanders M, Blackburn G, Dujardin JC, Rijal S, Khanal B, Illingworth CJ, Coombs GH, Carter KC. 2016. In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: genomic and metabolomic characterization. Mol Microbiol 99:1134–1148. doi:10.1111/mmi.13291. PubMed DOI PMC
Sterkers Y, Crobu L, Lachaud L, Pagès M, Bastien P. 2014. Parasexuality and mosaic aneuploidy in Leishmania: alternative genetics. Trends Parasitol 30:429–435. doi:10.1016/j.pt.2014.07.002. PubMed DOI
Leprohon P, Légaré D, Raymond F, Madore E, Hardiman G, Corbeil J, Ouellette M. 2009. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res 37:1387–1399. doi:10.1093/nar/gkn1069. PubMed DOI PMC
De Gaudenzi JG, Noé G, Campo VA, Frasch AC, Cassola A. 2011. Gene expression regulation in trypanosomatids. Essays Biochem 51:31–46. doi:10.1042/bse0510031. PubMed DOI
Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH, Cotton JA, Hilley JD, de Doncker S, Maes I, Mottram JC, Quail MA, Rijal S, Sanders M, Schönian G, Stark O, Sundar S, Vanaerschot M, Hertz-Fowler C, Dujardin JC, Berriman M. 2011. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 21:2143–2156. doi:10.1101/gr.123430.111. PubMed DOI PMC
Kramer S. 2012. Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Mol Biochem Parasitol 181:61–72. doi:10.1016/j.molbiopara.2011.10.002. PubMed DOI
Gossage SM, Rogers ME, Bates PA. 2003. Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol 33:1027–1034. doi:10.1016/S0020-7519(03)00142-5. PubMed DOI PMC
Kloehn J, Saunders EC, O’Callaghan S, Dagley MJ, McConville MJ. 2015. Characterization of metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling. PLOS Pathog 11:e1004683. doi:10.1371/journal.ppat.1004683. PubMed DOI PMC
Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J. 2009. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet 5:e1000705. doi:10.1371/journal.pgen.1000705. PubMed DOI PMC
Kasuga T, Bui M, Bernhardt E, Swiecki T, Aram K, Cano LM, Webber J, Brasier C, Press C, Grünwald NJ, Rizzo DM, Garbelotto M. 2016. Host-induced aneuploidy and phenotypic diversification in the sudden Oak death pathogen Phytophthora ramorum. BMC Genomics 17:385. doi:10.1186/s12864-016-2717-z. PubMed DOI PMC
Jackson AP. 2010. The evolution of amastin surface glycoproteins in trypanosomatid parasites. Mol Biol Evol 27:33–45. doi:10.1093/molbev/msp214. PubMed DOI PMC
de Paiva RMC, Grazielle-Silva V, Cardoso MS, Nakagaki BN, Mendonça-Neto RP, Canavaci AMC, Souza Melo N, Martinelli PM, Fernandes AP, daRocha WD, Teixeira SMR. 2015. Amastin knockdown in Leishmania braziliensis affects parasite-macrophage interaction and results in impaired viability of intracellular amastigotes. PLoS Pathog 11:e1005296. doi:10.1371/journal.ppat.1005296. PubMed DOI PMC
Sádlová J, Volf P, Victoir K, Dujardin JC, Votýpka J. 2006. Virulent and attenuated lines of Leishmania major: DNA karyotypes and differences in metalloproteinase GP63. Folia Parasitol (Praha) 53:81–90. doi:10.14411/fp.2006.011. PubMed DOI
Chen DQ, Kolli BK, Yadava N, Lu HG, Gilman-Sachs A, Peterson DA, Chang KP. 2000. Episomal expression of specific sense and antisense mRNAs in Leishmania amazonensis: modulation of gp63 level in promastigotes and their infection of macrophages in vitro. Infect Immun 68:80–86. doi:10.1128/IAI.68.1.80-86.2000. PubMed DOI PMC
Bulazel KV, Ferreri GC, Eldridge MDB, O’Neill RJ. 2007. Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol 8:R170. doi:10.1186/gb-2007-8-8-r170. PubMed DOI PMC
Fiebig M, Kelly S, Gluenz E. 2015. Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog 11:1–28. doi:10.1371/journal.ppat.1005186. PubMed DOI PMC
Alcolea PJ, Alonso A, Domínguez M, Parro V, Jiménez M, Molina R, Larraga V. 2016. Influence of the microenvironment in the transcriptome of Leishmania infantum promastigotes: sand fly versus culture. PLOS Negl Trop Dis 10:e0004693. doi:10.1371/journal.pntd.0004693. PubMed DOI PMC
Späth GF, Drini S, Rachidi N. 2015, A touch of zen: post-translational regulation of the Leishmania stress response. Cell Microbiol 17:632–638. doi:10.1111/cmi.12440. PubMed DOI
Mandell MA, Beverley SM. 2017. Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc Natl Acad Sci U S A 114:E801–E810. doi:10.1073/pnas.1619265114. PubMed DOI PMC
Rijal S, Yardley V, Chappuis F, Decuypere S, Khanal B, Singh R, Boelaert M, De Doncker S, Croft S, Dujardin JC. 2007. Antimonial treatment of visceral leishmaniasis: are current in vitro susceptibility assays adequate for prognosis of in vivo therapy outcome? Microbes Infect 9:529–535. doi:10.1016/j.micinf.2007.01.009. PubMed DOI
Murray HW. 1981. Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages. J Exp Med 153:1302–1315. doi:10.1084/jem.153.5.1302. PubMed DOI PMC
Keithly JS. 1976. Infectivity of Leishmania donovani amastigotes and promastigotes for golden hamsters. J Protozool 23:244–245. doi:10.1111/j.1550-7408.1976.tb03763.x. PubMed DOI
Pescher P, Blisnick T, Bastin P, Späth GF. 2011. Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation. Cell Microbiol 13:978–991. doi:10.1111/j.1462-5822.2011.01593.x. PubMed DOI
Sadlova J, Seblova V, Votypka J, Warburg A, Volf P. 2015. Xenodiagnosis of Leishmania donovani in BALB/c mice using Phlebotomus orientalis: a new laboratory model. Parasit Vectors 8:158. doi:10.1186/s13071-015-0765-x. PubMed DOI PMC
Bronner IF, Quail MA, Turner DJ, Swerdlow H. 2014. Improved protocols for Illumina sequencing. Curr Protoc Hum Genet 80:18.2.1–18.2.42. doi:10.1002/0471142905.hg1802s80. PubMed DOI
Zhao S, Guo Y, Sheng Q, Shyr Y. 2014. Heatmap3: an improved heatmap package with more powerful and convenient features. BMC Bioinformatics 15:16. doi:10.1186/1471-2105-15-S10-P16. PubMed DOI
Hunter JD. 2007. Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95. doi:10.1109/MCSE.2007.55. DOI
Van Der Walt S, Colbert SC, Varoquaux G. 2011. The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13:22–30. doi:10.1109/MCSE.2011.37. DOI
Anders S, Huber W, Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M, Mortazavi A, Williams B, McCue K, Schaeffer L, Wold B, Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith O, He A, Marra M, Snyder M, Jones S, Licatalosi D, Mele A, Fak J, Ule J, Kayikci M, Chi S, Clark T, Schweitzer A, Blume J, Wang X, Darnell J, Darnell R, Smith A, Heisler L, Mellor J, Kaper F, Thompson M, Chee M, Roth F, Giaever G, Nislow C, et al. . 2010. Differential expression analysis for sequence count data. Genome Biol 11:R106. doi:10.1186/gb-2010-11-10-r106. PubMed DOI PMC
Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection
Genomic analysis of Leishmania turanica strains from different regions of Central Asia
Experimental evolution links post-transcriptional regulation to Leishmania fitness gain
Genomic analysis of natural intra-specific hybrids among Ethiopian isolates of Leishmania donovani