Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes

. 2017 Aug 08 ; 13 (8) : 3911-3926. [epub] 20170717

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28657760

G-quadruplexes (GQs) are key noncanonical DNA and RNA architectures stabilized by desolvated monovalent cations present in their central channels. We analyze extended atomistic molecular dynamics simulations (∼580 μs in total) of GQs with 11 monovalent cation parametrizations, assessing GQ overall structural stability, dynamics of internal cations, and distortions of the G-tetrad geometries. Majority of simulations were executed with the SPC/E water model; however, test simulations with TIP3P and OPC water models are also reported. The identity and parametrization of ions strongly affect behavior of a tetramolecular d[GGG]4 GQ, which is unstable with several ion parametrizations. The remaining studied RNA and DNA GQs are structurally stable, though the G-tetrad geometries are always deformed by bifurcated H-bonding in a parametrization-specific manner. Thus, basic 10-μs-scale simulations of fully folded GQs can be safely done with a number of cation parametrizations. However, there are parametrization-specific differences and basic force-field errors affecting the quantitative description of ion-tetrad interactions, which may significantly affect studies of the ion-binding processes and description of the GQ folding landscape. Our d[GGG]4 simulations indirectly suggest that such studies will also be sensitive to the water models. During exchanges with bulk water, the Na+ ions move inside the GQs in a concerted manner, while larger relocations of the K+ ions are typically separated. We suggest that the Joung-Cheatham SPC/E K+ parameters represent a safe choice in simulation studies of GQs, though variation of ion parameters can be used for specific simulation goals.

Erratum v

PubMed

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Complex Biophysical and Computational Analyses of G-Quadruplex Ligands: The Porphyrin Stacks Back

. 2024 Dec 10 ; 30 (69) : e202402600. [epub] 20241103

Real Time Tracking of Nanoconfined Water-Assisted Ion Transfer in Functionalized Graphene Derivatives Supercapacitor Electrodes

. 2024 Oct ; 11 (39) : e2307583. [epub] 20240806

Comprehensive Assessment of Force-Field Performance in Molecular Dynamics Simulations of DNA/RNA Hybrid Duplexes

. 2024 Aug 13 ; 20 (15) : 6917-6929. [epub] 20240716

Mechanical Stability and Unfolding Pathways of Parallel Tetrameric G-Quadruplexes Probed by Pulling Simulations

. 2024 May 13 ; 64 (9) : 3896-3911. [epub] 20240417

Parallel G-triplexes and G-hairpins as potential transitory ensembles in the folding of parallel-stranded DNA G-Quadruplexes

. 2019 Aug 22 ; 47 (14) : 7276-7293.

Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions

. 2019 May 14 ; 15 (5) : 3288-3305. [epub] 20190402

Structural dynamics of propeller loop: towards folding of RNA G-quadruplex

. 2018 Sep 28 ; 46 (17) : 8754-8771.

RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

. 2018 Apr 25 ; 118 (8) : 4177-4338. [epub] 20180103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...